![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi2d | Structured version Visualization version GIF version |
Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 330 | . 2 ⊢ (𝜑 → ((¬ 𝜃 → 𝜓) ↔ (¬ 𝜃 → 𝜒))) |
3 | df-or 385 | . 2 ⊢ ((𝜃 ∨ 𝜓) ↔ (¬ 𝜃 → 𝜓)) | |
4 | df-or 385 | . 2 ⊢ ((𝜃 ∨ 𝜒) ↔ (¬ 𝜃 → 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 303 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 385 |
This theorem is referenced by: orbi1d 739 orbi12d 746 eueq2 3380 sbc2or 3444 r19.44zv 4069 rexprg 4235 rextpg 4237 swopolem 5044 poleloe 5527 elsucg 5792 elsuc2g 5793 brdifun 7771 brwdom 8472 isfin1a 9114 elgch 9444 suplem2pr 9875 axlttri 10109 mulcan1g 10680 elznn0 11392 elznn 11393 zindd 11478 rpneg 11863 dfle2 11980 fzm1 12420 fzosplitsni 12579 hashv01gt1 13133 zeo5 15080 bitsf1 15168 lcmval 15305 lcmneg 15316 lcmass 15327 isprm6 15426 infpn2 15617 irredmul 18709 domneq0 19297 znfld 19909 quotval 24047 plydivlem4 24051 plydivex 24052 aalioulem2 24088 aalioulem5 24091 aalioulem6 24092 aaliou 24093 aaliou2 24095 aaliou2b 24096 isinag 25729 axcontlem7 25850 hashecclwwlksn1 26954 eliccioo 29639 tlt2 29664 sibfof 30402 ballotlemfc0 30554 ballotlemfcc 30555 seglelin 32223 lineunray 32254 topdifinfeq 33198 mblfinlem2 33447 pridl 33836 maxidlval 33838 ispridlc 33869 pridlc 33870 dmnnzd 33874 lcfl7N 36790 aomclem8 37631 orbi1r 38716 iccpartgtl 41362 iccpartleu 41364 lindslinindsimp2lem5 42251 lindslinindsimp2 42252 |
Copyright terms: Public domain | W3C validator |