Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemt0 Structured version   Visualization version   GIF version

Theorem eulerpartlemt0 30431
Description: Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
Assertion
Ref Expression
eulerpartlemt0 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlemt0
StepHypRef Expression
1 cnveq 5296 . . . . . 6 (𝑓 = 𝐴𝑓 = 𝐴)
21imaeq1d 5465 . . . . 5 (𝑓 = 𝐴 → (𝑓 “ ℕ) = (𝐴 “ ℕ))
32sseq1d 3632 . . . 4 (𝑓 = 𝐴 → ((𝑓 “ ℕ) ⊆ 𝐽 ↔ (𝐴 “ ℕ) ⊆ 𝐽))
4 eulerpart.t . . . 4 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
53, 4elrab2 3366 . . 3 (𝐴𝑇 ↔ (𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽))
62eleq1d 2686 . . . 4 (𝑓 = 𝐴 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
7 eulerpart.r . . . 4 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
86, 7elab4g 3355 . . 3 (𝐴𝑅 ↔ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin))
95, 8anbi12i 733 . 2 ((𝐴𝑇𝐴𝑅) ↔ ((𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin)))
10 elin 3796 . 2 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴𝑇𝐴𝑅))
11 elex 3212 . . . . 5 (𝐴 ∈ (ℕ0𝑚 ℕ) → 𝐴 ∈ V)
1211pm4.71i 664 . . . 4 (𝐴 ∈ (ℕ0𝑚 ℕ) ↔ (𝐴 ∈ (ℕ0𝑚 ℕ) ∧ 𝐴 ∈ V))
1312anbi1i 731 . . 3 ((𝐴 ∈ (ℕ0𝑚 ℕ) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)) ↔ ((𝐴 ∈ (ℕ0𝑚 ℕ) ∧ 𝐴 ∈ V) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)))
14 3anass 1042 . . 3 ((𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽) ↔ (𝐴 ∈ (ℕ0𝑚 ℕ) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)))
15 an42 866 . . 3 (((𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin)) ↔ ((𝐴 ∈ (ℕ0𝑚 ℕ) ∧ 𝐴 ∈ V) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)))
1613, 14, 153bitr4i 292 . 2 ((𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽) ↔ ((𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin)))
179, 10, 163bitr4i 292 1 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wral 2912  {crab 2916  Vcvv 3200  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   class class class wbr 4653  {copab 4712  cmpt 4729  ccnv 5113  cima 5117  cfv 5888  (class class class)co 6650  cmpt2 6652   supp csupp 7295  𝑚 cmap 7857  Fincfn 7955  1c1 9937   · cmul 9941  cle 10075  cn 11020  2c2 11070  0cn0 11292  cexp 12860  Σcsu 14416  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  eulerpartlemf  30432  eulerpartlemt  30433  eulerpartlemmf  30437  eulerpartlemgvv  30438  eulerpartlemgu  30439  eulerpartlemgh  30440  eulerpartlemgs2  30442  eulerpartlemn  30443
  Copyright terms: Public domain W3C validator