Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemt0 Structured version   Visualization version   Unicode version

Theorem eulerpartlemt0 30431
Description: Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
eulerpart.o  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
eulerpart.d  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
eulerpart.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
eulerpart.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
eulerpart.h  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
eulerpart.m  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
eulerpart.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpart.t  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
Assertion
Ref Expression
eulerpartlemt0  |-  ( A  e.  ( T  i^i  R )  <->  ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  e.  Fin  /\  ( `' A " NN )  C_  J ) )
Distinct variable groups:    A, f    f, J
Allowed substitution hints:    A( x, y, z, g, k, n, r)    D( x, y, z, f, g, k, n, r)    P( x, y, z, f, g, k, n, r)    R( x, y, z, f, g, k, n, r)    T( x, y, z, f, g, k, n, r)    F( x, y, z, f, g, k, n, r)    H( x, y, z, f, g, k, n, r)    J( x, y, z, g, k, n, r)    M( x, y, z, f, g, k, n, r)    N( x, y, z, f, g, k, n, r)    O( x, y, z, f, g, k, n, r)

Proof of Theorem eulerpartlemt0
StepHypRef Expression
1 cnveq 5296 . . . . . 6  |-  ( f  =  A  ->  `' f  =  `' A
)
21imaeq1d 5465 . . . . 5  |-  ( f  =  A  ->  ( `' f " NN )  =  ( `' A " NN ) )
32sseq1d 3632 . . . 4  |-  ( f  =  A  ->  (
( `' f " NN )  C_  J  <->  ( `' A " NN )  C_  J ) )
4 eulerpart.t . . . 4  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
53, 4elrab2 3366 . . 3  |-  ( A  e.  T  <->  ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  C_  J
) )
62eleq1d 2686 . . . 4  |-  ( f  =  A  ->  (
( `' f " NN )  e.  Fin  <->  ( `' A " NN )  e.  Fin ) )
7 eulerpart.r . . . 4  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
86, 7elab4g 3355 . . 3  |-  ( A  e.  R  <->  ( A  e.  _V  /\  ( `' A " NN )  e.  Fin ) )
95, 8anbi12i 733 . 2  |-  ( ( A  e.  T  /\  A  e.  R )  <->  ( ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  C_  J
)  /\  ( A  e.  _V  /\  ( `' A " NN )  e.  Fin ) ) )
10 elin 3796 . 2  |-  ( A  e.  ( T  i^i  R )  <->  ( A  e.  T  /\  A  e.  R ) )
11 elex 3212 . . . . 5  |-  ( A  e.  ( NN0  ^m  NN )  ->  A  e. 
_V )
1211pm4.71i 664 . . . 4  |-  ( A  e.  ( NN0  ^m  NN )  <->  ( A  e.  ( NN0  ^m  NN )  /\  A  e.  _V ) )
1312anbi1i 731 . . 3  |-  ( ( A  e.  ( NN0 
^m  NN )  /\  ( ( `' A " NN )  e.  Fin  /\  ( `' A " NN )  C_  J ) )  <->  ( ( A  e.  ( NN0  ^m  NN )  /\  A  e. 
_V )  /\  (
( `' A " NN )  e.  Fin  /\  ( `' A " NN )  C_  J ) ) )
14 3anass 1042 . . 3  |-  ( ( A  e.  ( NN0 
^m  NN )  /\  ( `' A " NN )  e.  Fin  /\  ( `' A " NN ) 
C_  J )  <->  ( A  e.  ( NN0  ^m  NN )  /\  ( ( `' A " NN )  e.  Fin  /\  ( `' A " NN ) 
C_  J ) ) )
15 an42 866 . . 3  |-  ( ( ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  C_  J
)  /\  ( A  e.  _V  /\  ( `' A " NN )  e.  Fin ) )  <-> 
( ( A  e.  ( NN0  ^m  NN )  /\  A  e.  _V )  /\  ( ( `' A " NN )  e.  Fin  /\  ( `' A " NN ) 
C_  J ) ) )
1613, 14, 153bitr4i 292 . 2  |-  ( ( A  e.  ( NN0 
^m  NN )  /\  ( `' A " NN )  e.  Fin  /\  ( `' A " NN ) 
C_  J )  <->  ( ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN ) 
C_  J )  /\  ( A  e.  _V  /\  ( `' A " NN )  e.  Fin ) ) )
179, 10, 163bitr4i 292 1  |-  ( A  e.  ( T  i^i  R )  <->  ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  e.  Fin  /\  ( `' A " NN )  C_  J ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   {copab 4712    |-> cmpt 4729   `'ccnv 5113   "cima 5117   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   supp csupp 7295    ^m cmap 7857   Fincfn 7955   1c1 9937    x. cmul 9941    <_ cle 10075   NNcn 11020   2c2 11070   NN0cn0 11292   ^cexp 12860   sum_csu 14416    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  eulerpartlemf  30432  eulerpartlemt  30433  eulerpartlemmf  30437  eulerpartlemgvv  30438  eulerpartlemgu  30439  eulerpartlemgh  30440  eulerpartlemgs2  30442  eulerpartlemn  30443
  Copyright terms: Public domain W3C validator