| Step | Hyp | Ref
| Expression |
| 1 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑜 ∈ (ℕ0
↑𝑚 𝐽) → 𝑜:𝐽⟶ℕ0) |
| 2 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → 𝑜:𝐽⟶ℕ0) |
| 3 | | c0ex 10034 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
| 4 | 3 | fconst 6091 |
. . . . . . . . . 10
⊢ ((ℕ
∖ 𝐽) ×
{0}):(ℕ ∖ 𝐽)⟶{0} |
| 5 | 4 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0}) |
| 6 | | disjdif 4040 |
. . . . . . . . . 10
⊢ (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅ |
| 7 | 6 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅) |
| 8 | | fun 6066 |
. . . . . . . . 9
⊢ (((𝑜:𝐽⟶ℕ0 ∧ ((ℕ
∖ 𝐽) ×
{0}):(ℕ ∖ 𝐽)⟶{0}) ∧ (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪
{0})) |
| 9 | 2, 5, 7, 8 | syl21anc 1325 |
. . . . . . . 8
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪
{0})) |
| 10 | | eulerpart.j |
. . . . . . . . . . 11
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| 11 | | ssrab2 3687 |
. . . . . . . . . . 11
⊢ {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} ⊆
ℕ |
| 12 | 10, 11 | eqsstri 3635 |
. . . . . . . . . 10
⊢ 𝐽 ⊆
ℕ |
| 13 | | undif 4049 |
. . . . . . . . . 10
⊢ (𝐽 ⊆ ℕ ↔ (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ) |
| 14 | 12, 13 | mpbi 220 |
. . . . . . . . 9
⊢ (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ |
| 15 | | 0nn0 11307 |
. . . . . . . . . . 11
⊢ 0 ∈
ℕ0 |
| 16 | | snssi 4339 |
. . . . . . . . . . 11
⊢ (0 ∈
ℕ0 → {0} ⊆ ℕ0) |
| 17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
⊢ {0}
⊆ ℕ0 |
| 18 | | ssequn2 3786 |
. . . . . . . . . 10
⊢ ({0}
⊆ ℕ0 ↔ (ℕ0 ∪ {0}) =
ℕ0) |
| 19 | 17, 18 | mpbi 220 |
. . . . . . . . 9
⊢
(ℕ0 ∪ {0}) = ℕ0 |
| 20 | 14, 19 | feq23i 6039 |
. . . . . . . 8
⊢ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0
∪ {0}) ↔ (𝑜 ∪
((ℕ ∖ 𝐽)
× {0})):ℕ⟶ℕ0) |
| 21 | 9, 20 | sylib 208 |
. . . . . . 7
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) ×
{0})):ℕ⟶ℕ0) |
| 22 | | nn0ex 11298 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
| 23 | | nnex 11026 |
. . . . . . . 8
⊢ ℕ
∈ V |
| 24 | 22, 23 | elmap 7886 |
. . . . . . 7
⊢ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈
(ℕ0 ↑𝑚 ℕ) ↔ (𝑜 ∪ ((ℕ ∖ 𝐽) ×
{0})):ℕ⟶ℕ0) |
| 25 | 21, 24 | sylibr 224 |
. . . . . 6
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0
↑𝑚 ℕ)) |
| 26 | | cnvun 5538 |
. . . . . . . . 9
⊢ ◡(𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) = (◡𝑜 ∪ ◡((ℕ ∖ 𝐽) × {0})) |
| 27 | 26 | imaeq1i 5463 |
. . . . . . . 8
⊢ (◡(𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((◡𝑜 ∪ ◡((ℕ ∖ 𝐽) × {0})) “
ℕ) |
| 28 | | imaundir 5546 |
. . . . . . . 8
⊢ ((◡𝑜 ∪ ◡((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((◡𝑜 “ ℕ) ∪ (◡((ℕ ∖ 𝐽) × {0}) “
ℕ)) |
| 29 | 27, 28 | eqtri 2644 |
. . . . . . 7
⊢ (◡(𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((◡𝑜 “ ℕ) ∪ (◡((ℕ ∖ 𝐽) × {0}) “
ℕ)) |
| 30 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑜 ∈ V |
| 31 | | cnveq 5296 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑜 → ◡𝑓 = ◡𝑜) |
| 32 | 31 | imaeq1d 5465 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑜 → (◡𝑓 “ ℕ) = (◡𝑜 “ ℕ)) |
| 33 | 32 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑜 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝑜 “ ℕ) ∈
Fin)) |
| 34 | | eulerpart.r |
. . . . . . . . . . 11
⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 35 | 30, 33, 34 | elab2 3354 |
. . . . . . . . . 10
⊢ (𝑜 ∈ 𝑅 ↔ (◡𝑜 “ ℕ) ∈
Fin) |
| 36 | 35 | biimpi 206 |
. . . . . . . . 9
⊢ (𝑜 ∈ 𝑅 → (◡𝑜 “ ℕ) ∈
Fin) |
| 37 | 36 | adantl 482 |
. . . . . . . 8
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → (◡𝑜 “ ℕ) ∈
Fin) |
| 38 | | cnvxp 5551 |
. . . . . . . . . . . . . 14
⊢ ◡((ℕ ∖ 𝐽) × {0}) = ({0} × (ℕ
∖ 𝐽)) |
| 39 | 38 | dmeqi 5325 |
. . . . . . . . . . . . 13
⊢ dom ◡((ℕ ∖ 𝐽) × {0}) = dom ({0} × (ℕ
∖ 𝐽)) |
| 40 | | 2nn 11185 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ |
| 41 | | 2z 11409 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℤ |
| 42 | | iddvds 14995 |
. . . . . . . . . . . . . . . . 17
⊢ (2 ∈
ℤ → 2 ∥ 2) |
| 43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∥
2 |
| 44 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 2 → (2 ∥ 𝑧 ↔ 2 ∥
2)) |
| 45 | 44 | notbid 308 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 2 → (¬ 2 ∥
𝑧 ↔ ¬ 2 ∥
2)) |
| 46 | 45, 10 | elrab2 3366 |
. . . . . . . . . . . . . . . . 17
⊢ (2 ∈
𝐽 ↔ (2 ∈ ℕ
∧ ¬ 2 ∥ 2)) |
| 47 | 46 | simprbi 480 |
. . . . . . . . . . . . . . . 16
⊢ (2 ∈
𝐽 → ¬ 2 ∥
2) |
| 48 | 43, 47 | mt2 191 |
. . . . . . . . . . . . . . 15
⊢ ¬ 2
∈ 𝐽 |
| 49 | | eldif 3584 |
. . . . . . . . . . . . . . 15
⊢ (2 ∈
(ℕ ∖ 𝐽) ↔
(2 ∈ ℕ ∧ ¬ 2 ∈ 𝐽)) |
| 50 | 40, 48, 49 | mpbir2an 955 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
(ℕ ∖ 𝐽) |
| 51 | | ne0i 3921 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(ℕ ∖ 𝐽) →
(ℕ ∖ 𝐽) ≠
∅) |
| 52 | | dmxp 5344 |
. . . . . . . . . . . . . 14
⊢ ((ℕ
∖ 𝐽) ≠ ∅
→ dom ({0} × (ℕ ∖ 𝐽)) = {0}) |
| 53 | 50, 51, 52 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ dom ({0}
× (ℕ ∖ 𝐽)) = {0} |
| 54 | 39, 53 | eqtri 2644 |
. . . . . . . . . . . 12
⊢ dom ◡((ℕ ∖ 𝐽) × {0}) = {0} |
| 55 | 54 | ineq1i 3810 |
. . . . . . . . . . 11
⊢ (dom
◡((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ({0} ∩
ℕ) |
| 56 | | incom 3805 |
. . . . . . . . . . 11
⊢ (ℕ
∩ {0}) = ({0} ∩ ℕ) |
| 57 | | 0nnn 11052 |
. . . . . . . . . . . 12
⊢ ¬ 0
∈ ℕ |
| 58 | | disjsn 4246 |
. . . . . . . . . . . 12
⊢ ((ℕ
∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ) |
| 59 | 57, 58 | mpbir 221 |
. . . . . . . . . . 11
⊢ (ℕ
∩ {0}) = ∅ |
| 60 | 55, 56, 59 | 3eqtr2i 2650 |
. . . . . . . . . 10
⊢ (dom
◡((ℕ ∖ 𝐽) × {0}) ∩ ℕ) =
∅ |
| 61 | | imadisj 5484 |
. . . . . . . . . 10
⊢ ((◡((ℕ ∖ 𝐽) × {0}) “ ℕ) = ∅
↔ (dom ◡((ℕ ∖ 𝐽) × {0}) ∩ ℕ) =
∅) |
| 62 | 60, 61 | mpbir 221 |
. . . . . . . . 9
⊢ (◡((ℕ ∖ 𝐽) × {0}) “ ℕ) =
∅ |
| 63 | | 0fin 8188 |
. . . . . . . . 9
⊢ ∅
∈ Fin |
| 64 | 62, 63 | eqeltri 2697 |
. . . . . . . 8
⊢ (◡((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈
Fin |
| 65 | | unfi 8227 |
. . . . . . . 8
⊢ (((◡𝑜 “ ℕ) ∈ Fin ∧ (◡((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈ Fin)
→ ((◡𝑜 “ ℕ) ∪ (◡((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈
Fin) |
| 66 | 37, 64, 65 | sylancl 694 |
. . . . . . 7
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → ((◡𝑜 “ ℕ) ∪ (◡((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈
Fin) |
| 67 | 29, 66 | syl5eqel 2705 |
. . . . . 6
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → (◡(𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈
Fin) |
| 68 | | cnvimass 5485 |
. . . . . . . . 9
⊢ (◡𝑜 “ ℕ) ⊆ dom 𝑜 |
| 69 | | fdm 6051 |
. . . . . . . . . 10
⊢ (𝑜:𝐽⟶ℕ0 → dom 𝑜 = 𝐽) |
| 70 | 2, 69 | syl 17 |
. . . . . . . . 9
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → dom 𝑜 = 𝐽) |
| 71 | 68, 70 | syl5sseq 3653 |
. . . . . . . 8
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → (◡𝑜 “ ℕ) ⊆ 𝐽) |
| 72 | | 0ss 3972 |
. . . . . . . . . 10
⊢ ∅
⊆ 𝐽 |
| 73 | 62, 72 | eqsstri 3635 |
. . . . . . . . 9
⊢ (◡((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆
𝐽 |
| 74 | 73 | a1i 11 |
. . . . . . . 8
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → (◡((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆
𝐽) |
| 75 | 71, 74 | unssd 3789 |
. . . . . . 7
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → ((◡𝑜 “ ℕ) ∪ (◡((ℕ ∖ 𝐽) × {0}) “ ℕ)) ⊆
𝐽) |
| 76 | 29, 75 | syl5eqss 3649 |
. . . . . 6
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → (◡(𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆
𝐽) |
| 77 | | eulerpart.p |
. . . . . . 7
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑𝑚 ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| 78 | | eulerpart.o |
. . . . . . 7
⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| 79 | | eulerpart.d |
. . . . . . 7
⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| 80 | | eulerpart.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) |
| 81 | | eulerpart.h |
. . . . . . 7
⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
| 82 | | eulerpart.m |
. . . . . . 7
⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
| 83 | | eulerpart.t |
. . . . . . 7
⊢ 𝑇 = {𝑓 ∈ (ℕ0
↑𝑚 ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
| 84 | 77, 78, 79, 10, 80, 81, 82, 34, 83 | eulerpartlemt0 30431 |
. . . . . 6
⊢ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇 ∩ 𝑅) ↔ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0
↑𝑚 ℕ) ∧ (◡(𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈ Fin
∧ (◡(𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆
𝐽)) |
| 85 | 25, 67, 76, 84 | syl3anbrc 1246 |
. . . . 5
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇 ∩ 𝑅)) |
| 86 | | resundir 5411 |
. . . . . 6
⊢ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽) = ((𝑜 ↾ 𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) |
| 87 | | ffn 6045 |
. . . . . . . 8
⊢ (𝑜:𝐽⟶ℕ0 → 𝑜 Fn 𝐽) |
| 88 | | fnresdm 6000 |
. . . . . . . . 9
⊢ (𝑜 Fn 𝐽 → (𝑜 ↾ 𝐽) = 𝑜) |
| 89 | | incom 3805 |
. . . . . . . . . . . 12
⊢ ((ℕ
∖ 𝐽) ∩ 𝐽) = (𝐽 ∩ (ℕ ∖ 𝐽)) |
| 90 | 89, 6 | eqtri 2644 |
. . . . . . . . . . 11
⊢ ((ℕ
∖ 𝐽) ∩ 𝐽) = ∅ |
| 91 | | fnconstg 6093 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℕ0 → ((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽)) |
| 92 | | fnresdisj 6001 |
. . . . . . . . . . . 12
⊢
(((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽) → (((ℕ ∖
𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅)) |
| 93 | 15, 91, 92 | mp2b 10 |
. . . . . . . . . . 11
⊢
(((ℕ ∖ 𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅) |
| 94 | 90, 93 | mpbi 220 |
. . . . . . . . . 10
⊢
(((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅ |
| 95 | 94 | a1i 11 |
. . . . . . . . 9
⊢ (𝑜 Fn 𝐽 → (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅) |
| 96 | 88, 95 | uneq12d 3768 |
. . . . . . . 8
⊢ (𝑜 Fn 𝐽 → ((𝑜 ↾ 𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅)) |
| 97 | 2, 87, 96 | 3syl 18 |
. . . . . . 7
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → ((𝑜 ↾ 𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅)) |
| 98 | | un0 3967 |
. . . . . . 7
⊢ (𝑜 ∪ ∅) = 𝑜 |
| 99 | 97, 98 | syl6eq 2672 |
. . . . . 6
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → ((𝑜 ↾ 𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = 𝑜) |
| 100 | 86, 99 | syl5req 2669 |
. . . . 5
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽)) |
| 101 | | reseq1 5390 |
. . . . . . 7
⊢ (𝑚 = (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) → (𝑚 ↾ 𝐽) = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽)) |
| 102 | 101 | eqeq2d 2632 |
. . . . . 6
⊢ (𝑚 = (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) → (𝑜 = (𝑚 ↾ 𝐽) ↔ 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽))) |
| 103 | 102 | rspcev 3309 |
. . . . 5
⊢ (((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽)) → ∃𝑚 ∈ (𝑇 ∩ 𝑅)𝑜 = (𝑚 ↾ 𝐽)) |
| 104 | 85, 100, 103 | syl2anc 693 |
. . . 4
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) → ∃𝑚 ∈ (𝑇 ∩ 𝑅)𝑜 = (𝑚 ↾ 𝐽)) |
| 105 | | simpr 477 |
. . . . . . 7
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → 𝑜 = (𝑚 ↾ 𝐽)) |
| 106 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → 𝑚 ∈ (𝑇 ∩ 𝑅)) |
| 107 | 77, 78, 79, 10, 80, 81, 82, 34, 83 | eulerpartlemt0 30431 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (𝑇 ∩ 𝑅) ↔ (𝑚 ∈ (ℕ0
↑𝑚 ℕ) ∧ (◡𝑚 “ ℕ) ∈ Fin ∧ (◡𝑚 “ ℕ) ⊆ 𝐽)) |
| 108 | 106, 107 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → (𝑚 ∈ (ℕ0
↑𝑚 ℕ) ∧ (◡𝑚 “ ℕ) ∈ Fin ∧ (◡𝑚 “ ℕ) ⊆ 𝐽)) |
| 109 | 108 | simp1d 1073 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → 𝑚 ∈ (ℕ0
↑𝑚 ℕ)) |
| 110 | 22, 23 | elmap 7886 |
. . . . . . . . . 10
⊢ (𝑚 ∈ (ℕ0
↑𝑚 ℕ) ↔ 𝑚:ℕ⟶ℕ0) |
| 111 | 109, 110 | sylib 208 |
. . . . . . . . 9
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → 𝑚:ℕ⟶ℕ0) |
| 112 | | fssres 6070 |
. . . . . . . . 9
⊢ ((𝑚:ℕ⟶ℕ0 ∧
𝐽 ⊆ ℕ) →
(𝑚 ↾ 𝐽):𝐽⟶ℕ0) |
| 113 | 111, 12, 112 | sylancl 694 |
. . . . . . . 8
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → (𝑚 ↾ 𝐽):𝐽⟶ℕ0) |
| 114 | 10, 23 | rabex2 4815 |
. . . . . . . . 9
⊢ 𝐽 ∈ V |
| 115 | 22, 114 | elmap 7886 |
. . . . . . . 8
⊢ ((𝑚 ↾ 𝐽) ∈ (ℕ0
↑𝑚 𝐽) ↔ (𝑚 ↾ 𝐽):𝐽⟶ℕ0) |
| 116 | 113, 115 | sylibr 224 |
. . . . . . 7
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → (𝑚 ↾ 𝐽) ∈ (ℕ0
↑𝑚 𝐽)) |
| 117 | 105, 116 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → 𝑜 ∈ (ℕ0
↑𝑚 𝐽)) |
| 118 | | ffun 6048 |
. . . . . . . . . 10
⊢ (𝑚:ℕ⟶ℕ0 →
Fun 𝑚) |
| 119 | | respreima 6344 |
. . . . . . . . . 10
⊢ (Fun
𝑚 → (◡(𝑚 ↾ 𝐽) “ ℕ) = ((◡𝑚 “ ℕ) ∩ 𝐽)) |
| 120 | 111, 118,
119 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → (◡(𝑚 ↾ 𝐽) “ ℕ) = ((◡𝑚 “ ℕ) ∩ 𝐽)) |
| 121 | 108 | simp2d 1074 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → (◡𝑚 “ ℕ) ∈
Fin) |
| 122 | | infi 8184 |
. . . . . . . . . 10
⊢ ((◡𝑚 “ ℕ) ∈ Fin → ((◡𝑚 “ ℕ) ∩ 𝐽) ∈ Fin) |
| 123 | 121, 122 | syl 17 |
. . . . . . . . 9
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → ((◡𝑚 “ ℕ) ∩ 𝐽) ∈ Fin) |
| 124 | 120, 123 | eqeltrd 2701 |
. . . . . . . 8
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → (◡(𝑚 ↾ 𝐽) “ ℕ) ∈
Fin) |
| 125 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑚 ∈ V |
| 126 | 125 | resex 5443 |
. . . . . . . . 9
⊢ (𝑚 ↾ 𝐽) ∈ V |
| 127 | | cnveq 5296 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑚 ↾ 𝐽) → ◡𝑓 = ◡(𝑚 ↾ 𝐽)) |
| 128 | 127 | imaeq1d 5465 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑚 ↾ 𝐽) → (◡𝑓 “ ℕ) = (◡(𝑚 ↾ 𝐽) “ ℕ)) |
| 129 | 128 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑓 = (𝑚 ↾ 𝐽) → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡(𝑚 ↾ 𝐽) “ ℕ) ∈
Fin)) |
| 130 | 126, 129,
34 | elab2 3354 |
. . . . . . . 8
⊢ ((𝑚 ↾ 𝐽) ∈ 𝑅 ↔ (◡(𝑚 ↾ 𝐽) “ ℕ) ∈
Fin) |
| 131 | 124, 130 | sylibr 224 |
. . . . . . 7
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → (𝑚 ↾ 𝐽) ∈ 𝑅) |
| 132 | 105, 131 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → 𝑜 ∈ 𝑅) |
| 133 | 117, 132 | jca 554 |
. . . . 5
⊢ ((𝑚 ∈ (𝑇 ∩ 𝑅) ∧ 𝑜 = (𝑚 ↾ 𝐽)) → (𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅)) |
| 134 | 133 | rexlimiva 3028 |
. . . 4
⊢
(∃𝑚 ∈
(𝑇 ∩ 𝑅)𝑜 = (𝑚 ↾ 𝐽) → (𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅)) |
| 135 | 104, 134 | impbii 199 |
. . 3
⊢ ((𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅) ↔ ∃𝑚 ∈ (𝑇 ∩ 𝑅)𝑜 = (𝑚 ↾ 𝐽)) |
| 136 | 135 | abbii 2739 |
. 2
⊢ {𝑜 ∣ (𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅)} = {𝑜 ∣ ∃𝑚 ∈ (𝑇 ∩ 𝑅)𝑜 = (𝑚 ↾ 𝐽)} |
| 137 | | df-in 3581 |
. 2
⊢
((ℕ0 ↑𝑚 𝐽) ∩ 𝑅) = {𝑜 ∣ (𝑜 ∈ (ℕ0
↑𝑚 𝐽) ∧ 𝑜 ∈ 𝑅)} |
| 138 | | eqid 2622 |
. . 3
⊢ (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) = (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) |
| 139 | 138 | rnmpt 5371 |
. 2
⊢ ran
(𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) = {𝑜 ∣ ∃𝑚 ∈ (𝑇 ∩ 𝑅)𝑜 = (𝑚 ↾ 𝐽)} |
| 140 | 136, 137,
139 | 3eqtr4i 2654 |
1
⊢
((ℕ0 ↑𝑚 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) |