![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exidcl | Structured version Visualization version GIF version |
Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
exidcl.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
exidcl | ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exidcl.1 | . . . . . . . 8 ⊢ 𝑋 = ran 𝐺 | |
2 | rngopidOLD 33652 | . . . . . . . 8 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺) | |
3 | 1, 2 | syl5eq 2668 | . . . . . . 7 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑋 = dom dom 𝐺) |
4 | 3 | eleq2d 2687 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ dom dom 𝐺)) |
5 | 3 | eleq2d 2687 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ dom dom 𝐺)) |
6 | 4, 5 | anbi12d 747 | . . . . 5 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺))) |
7 | 6 | pm5.32i 669 | . . . 4 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ↔ (𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺))) |
8 | inss1 3833 | . . . . . . 7 ⊢ (Magma ∩ ExId ) ⊆ Magma | |
9 | 8 | sseli 3599 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ Magma) |
10 | eqid 2622 | . . . . . . 7 ⊢ dom dom 𝐺 = dom dom 𝐺 | |
11 | 10 | clmgmOLD 33650 | . . . . . 6 ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
12 | 9, 11 | syl3an1 1359 | . . . . 5 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
13 | 12 | 3expb 1266 | . . . 4 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
14 | 7, 13 | sylbi 207 | . . 3 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
15 | 14 | 3impb 1260 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
16 | 3 | 3ad2ant1 1082 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑋 = dom dom 𝐺) |
17 | 15, 16 | eleqtrrd 2704 | 1 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∩ cin 3573 dom cdm 5114 ran crn 5115 (class class class)co 6650 ExId cexid 33643 Magmacmagm 33647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-ov 6653 df-exid 33644 df-mgmOLD 33648 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |