| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimdd | Structured version Visualization version GIF version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| exlimdd.1 | ⊢ Ⅎ𝑥𝜑 |
| exlimdd.2 | ⊢ Ⅎ𝑥𝜒 |
| exlimdd.3 | ⊢ (𝜑 → ∃𝑥𝜓) |
| exlimdd.4 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| exlimdd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdd.3 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | exlimdd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | exlimdd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 4 | exlimdd.4 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 5 | 4 | ex 450 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 6 | 2, 3, 5 | exlimd 2087 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| 7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: fvmptd3f 6295 ovmpt2df 6792 ex-natded9.26 27276 exlimimdd 33191 suprnmpt 39355 stoweidlem43 40260 stoweidlem44 40261 stoweidlem54 40271 |
| Copyright terms: Public domain | W3C validator |