Proof of Theorem ovmpt2df
| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1843 |
. 2
⊢
Ⅎ𝑥𝜑 |
| 2 | | ovmpt2df.5 |
. . . 4
⊢
Ⅎ𝑥𝐹 |
| 3 | | nfmpt21 6722 |
. . . 4
⊢
Ⅎ𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| 4 | 2, 3 | nfeq 2776 |
. . 3
⊢
Ⅎ𝑥 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| 5 | | ovmpt2df.6 |
. . 3
⊢
Ⅎ𝑥𝜓 |
| 6 | 4, 5 | nfim 1825 |
. 2
⊢
Ⅎ𝑥(𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓) |
| 7 | | ovmpt2df.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| 8 | | elex 3212 |
. . . 4
⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) |
| 9 | 7, 8 | syl 17 |
. . 3
⊢ (𝜑 → 𝐴 ∈ V) |
| 10 | | isset 3207 |
. . 3
⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| 11 | 9, 10 | sylib 208 |
. 2
⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
| 12 | | ovmpt2df.2 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) |
| 13 | | elex 3212 |
. . . . 5
⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) |
| 14 | 12, 13 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) |
| 15 | | isset 3207 |
. . . 4
⊢ (𝐵 ∈ V ↔ ∃𝑦 𝑦 = 𝐵) |
| 16 | 14, 15 | sylib 208 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ∃𝑦 𝑦 = 𝐵) |
| 17 | | nfv 1843 |
. . . 4
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 = 𝐴) |
| 18 | | ovmpt2df.7 |
. . . . . 6
⊢
Ⅎ𝑦𝐹 |
| 19 | | nfmpt22 6723 |
. . . . . 6
⊢
Ⅎ𝑦(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| 20 | 18, 19 | nfeq 2776 |
. . . . 5
⊢
Ⅎ𝑦 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| 21 | | ovmpt2df.8 |
. . . . 5
⊢
Ⅎ𝑦𝜓 |
| 22 | 20, 21 | nfim 1825 |
. . . 4
⊢
Ⅎ𝑦(𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓) |
| 23 | | oveq 6656 |
. . . . . 6
⊢ (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵)) |
| 24 | | simprl 794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑥 = 𝐴) |
| 25 | | simprr 796 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑦 = 𝐵) |
| 26 | 24, 25 | oveq12d 6668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵)) |
| 27 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝐴 ∈ 𝐶) |
| 28 | 24, 27 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑥 ∈ 𝐶) |
| 29 | 12 | adantrr 753 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝐵 ∈ 𝐷) |
| 30 | 25, 29 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑦 ∈ 𝐷) |
| 31 | | ovmpt2df.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) |
| 32 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| 33 | 32 | ovmpt4g 6783 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ 𝑉) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅) |
| 34 | 28, 30, 31, 33 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅) |
| 35 | 26, 34 | eqtr3d 2658 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑅) |
| 36 | 35 | eqeq2d 2632 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) ↔ (𝐴𝐹𝐵) = 𝑅)) |
| 37 | | ovmpt2df.4 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅 → 𝜓)) |
| 38 | 36, 37 | sylbid 230 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) → 𝜓)) |
| 39 | 23, 38 | syl5 34 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) |
| 40 | 39 | expr 643 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑦 = 𝐵 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓))) |
| 41 | 17, 22, 40 | exlimd 2087 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (∃𝑦 𝑦 = 𝐵 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓))) |
| 42 | 16, 41 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) |
| 43 | 1, 6, 11, 42 | exlimdd 2088 |
1
⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) |