MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt2df Structured version   Visualization version   GIF version

Theorem ovmpt2df 6792
Description: Alternate deduction version of ovmpt2 6796, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpt2df.1 (𝜑𝐴𝐶)
ovmpt2df.2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
ovmpt2df.3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
ovmpt2df.4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
ovmpt2df.5 𝑥𝐹
ovmpt2df.6 𝑥𝜓
ovmpt2df.7 𝑦𝐹
ovmpt2df.8 𝑦𝜓
Assertion
Ref Expression
ovmpt2df (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt2df
StepHypRef Expression
1 nfv 1843 . 2 𝑥𝜑
2 ovmpt2df.5 . . . 4 𝑥𝐹
3 nfmpt21 6722 . . . 4 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
42, 3nfeq 2776 . . 3 𝑥 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
5 ovmpt2df.6 . . 3 𝑥𝜓
64, 5nfim 1825 . 2 𝑥(𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)
7 ovmpt2df.1 . . . 4 (𝜑𝐴𝐶)
8 elex 3212 . . . 4 (𝐴𝐶𝐴 ∈ V)
97, 8syl 17 . . 3 (𝜑𝐴 ∈ V)
10 isset 3207 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
119, 10sylib 208 . 2 (𝜑 → ∃𝑥 𝑥 = 𝐴)
12 ovmpt2df.2 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
13 elex 3212 . . . . 5 (𝐵𝐷𝐵 ∈ V)
1412, 13syl 17 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐵 ∈ V)
15 isset 3207 . . . 4 (𝐵 ∈ V ↔ ∃𝑦 𝑦 = 𝐵)
1614, 15sylib 208 . . 3 ((𝜑𝑥 = 𝐴) → ∃𝑦 𝑦 = 𝐵)
17 nfv 1843 . . . 4 𝑦(𝜑𝑥 = 𝐴)
18 ovmpt2df.7 . . . . . 6 𝑦𝐹
19 nfmpt22 6723 . . . . . 6 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
2018, 19nfeq 2776 . . . . 5 𝑦 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
21 ovmpt2df.8 . . . . 5 𝑦𝜓
2220, 21nfim 1825 . . . 4 𝑦(𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)
23 oveq 6656 . . . . . 6 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
24 simprl 794 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑥 = 𝐴)
25 simprr 796 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑦 = 𝐵)
2624, 25oveq12d 6668 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
277adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝐴𝐶)
2824, 27eqeltrd 2701 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑥𝐶)
2912adantrr 753 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝐵𝐷)
3025, 29eqeltrd 2701 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑦𝐷)
31 ovmpt2df.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
32 eqid 2622 . . . . . . . . . . 11 (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅)
3332ovmpt4g 6783 . . . . . . . . . 10 ((𝑥𝐶𝑦𝐷𝑅𝑉) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
3428, 30, 31, 33syl3anc 1326 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
3526, 34eqtr3d 2658 . . . . . . . 8 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅)
3635eqeq2d 2632 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) ↔ (𝐴𝐹𝐵) = 𝑅))
37 ovmpt2df.4 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
3836, 37sylbid 230 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) → 𝜓))
3923, 38syl5 34 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
4039expr 643 . . . 4 ((𝜑𝑥 = 𝐴) → (𝑦 = 𝐵 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)))
4117, 22, 40exlimd 2087 . . 3 ((𝜑𝑥 = 𝐴) → (∃𝑦 𝑦 = 𝐵 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓)))
4216, 41mpd 15 . 2 ((𝜑𝑥 = 𝐴) → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
431, 6, 11, 42exlimdd 2088 1 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wnf 1708  wcel 1990  wnfc 2751  Vcvv 3200  (class class class)co 6650  cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  ovmpt2dv  6793  ovmpt2dv2  6794
  Copyright terms: Public domain W3C validator