Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem44 Structured version   Visualization version   GIF version

Theorem stoweidlem44 40261
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem44.1 𝑗𝜑
stoweidlem44.2 𝑡𝜑
stoweidlem44.3 𝐾 = (topGen‘ran (,))
stoweidlem44.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem44.5 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem44.6 (𝜑𝑀 ∈ ℕ)
stoweidlem44.7 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem44.8 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡))
stoweidlem44.9 𝑇 = 𝐽
stoweidlem44.10 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem44.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem44.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem44.13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem44.14 (𝜑𝑍𝑇)
Assertion
Ref Expression
stoweidlem44 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Distinct variable groups:   𝑓,𝑔,𝑖,𝑡,𝐺   𝑓,𝑗,𝑖,𝑡,𝐺   𝐴,𝑓,𝑔   𝑓,𝑀,𝑔,𝑖,𝑡   𝑇,𝑓,𝑔,𝑖,𝑡   𝜑,𝑓,𝑔,𝑖   ,𝑖,𝑗,𝑡,𝐺   𝐴,   𝑇,,𝑗   ,𝑍,𝑖,𝑡   𝑥,𝑗,𝑀,𝑡   𝑈,𝑗   𝑡,𝑝,𝑇   𝐴,𝑝   𝑃,𝑝   𝑈,𝑝   𝑍,𝑝   𝑥,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,,𝑗,𝑝)   𝐴(𝑡,𝑖,𝑗)   𝑃(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗)   𝑄(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗,𝑝)   𝑈(𝑥,𝑡,𝑓,𝑔,,𝑖)   𝐺(𝑥,𝑝)   𝐽(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗,𝑝)   𝐾(𝑥,𝑡,𝑓,𝑔,,𝑖,𝑗,𝑝)   𝑀(,𝑝)   𝑍(𝑥,𝑓,𝑔,𝑗)

Proof of Theorem stoweidlem44
StepHypRef Expression
1 stoweidlem44.2 . . . 4 𝑡𝜑
2 stoweidlem44.5 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
3 eqid 2622 . . . 4 (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
4 eqid 2622 . . . 4 (𝑡𝑇 ↦ (1 / 𝑀)) = (𝑡𝑇 ↦ (1 / 𝑀))
5 stoweidlem44.6 . . . 4 (𝜑𝑀 ∈ ℕ)
65nnrecred 11066 . . . 4 (𝜑 → (1 / 𝑀) ∈ ℝ)
7 stoweidlem44.7 . . . . 5 (𝜑𝐺:(1...𝑀)⟶𝑄)
8 stoweidlem44.4 . . . . . 6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
9 ssrab2 3687 . . . . . 6 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ⊆ 𝐴
108, 9eqsstri 3635 . . . . 5 𝑄𝐴
11 fss 6056 . . . . 5 ((𝐺:(1...𝑀)⟶𝑄𝑄𝐴) → 𝐺:(1...𝑀)⟶𝐴)
127, 10, 11sylancl 694 . . . 4 (𝜑𝐺:(1...𝑀)⟶𝐴)
13 stoweidlem44.11 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
14 stoweidlem44.12 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
15 stoweidlem44.13 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
16 stoweidlem44.3 . . . . 5 𝐾 = (topGen‘ran (,))
17 stoweidlem44.9 . . . . 5 𝑇 = 𝐽
18 eqid 2622 . . . . 5 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
19 stoweidlem44.10 . . . . . 6 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
2019sselda 3603 . . . . 5 ((𝜑𝑓𝐴) → 𝑓 ∈ (𝐽 Cn 𝐾))
2116, 17, 18, 20fcnre 39184 . . . 4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
221, 2, 3, 4, 5, 6, 12, 13, 14, 15, 21stoweidlem32 40249 . . 3 (𝜑𝑃𝐴)
238, 2, 5, 7, 21stoweidlem38 40255 . . . . . 6 ((𝜑𝑡𝑇) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
2423ex 450 . . . . 5 (𝜑 → (𝑡𝑇 → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
251, 24ralrimi 2957 . . . 4 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
26 stoweidlem44.14 . . . . 5 (𝜑𝑍𝑇)
278, 2, 5, 7, 21, 26stoweidlem37 40254 . . . 4 (𝜑 → (𝑃𝑍) = 0)
28 stoweidlem44.1 . . . . . . . . 9 𝑗𝜑
29 nfv 1843 . . . . . . . . 9 𝑗 𝑡 ∈ (𝑇𝑈)
3028, 29nfan 1828 . . . . . . . 8 𝑗(𝜑𝑡 ∈ (𝑇𝑈))
31 nfv 1843 . . . . . . . 8 𝑗0 < ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
32 stoweidlem44.8 . . . . . . . . . 10 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡))
3332r19.21bi 2932 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡))
34 df-rex 2918 . . . . . . . . 9 (∃𝑗 ∈ (1...𝑀)0 < ((𝐺𝑗)‘𝑡) ↔ ∃𝑗(𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡)))
3533, 34sylib 208 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑗(𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡)))
366ad2antrr 762 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (1 / 𝑀) ∈ ℝ)
37 simpll 790 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 𝜑)
38 eldifi 3732 . . . . . . . . . . 11 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
3938ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 𝑡𝑇)
40 fzfid 12772 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (1...𝑀) ∈ Fin)
418, 7, 21stoweidlem15 40232 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → (((𝐺𝑖)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))
4241an32s 846 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (((𝐺𝑖)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))
4342simp1d 1073 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
4440, 43fsumrecl 14465 . . . . . . . . . 10 ((𝜑𝑡𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) ∈ ℝ)
4537, 39, 44syl2anc 693 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) ∈ ℝ)
465nnred 11035 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
475nngt0d 11064 . . . . . . . . . . 11 (𝜑 → 0 < 𝑀)
4846, 47recgt0d 10958 . . . . . . . . . 10 (𝜑 → 0 < (1 / 𝑀))
4948ad2antrr 762 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < (1 / 𝑀))
50 0red 10041 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 ∈ ℝ)
51 simprl 794 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 𝑗 ∈ (1...𝑀))
5237, 51, 393jca 1242 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇))
53 snfi 8038 . . . . . . . . . . . . . . 15 {𝑗} ∈ Fin
5453a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → {𝑗} ∈ Fin)
55 simpl1 1064 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝜑)
56 simpl3 1066 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑡𝑇)
57 elsni 4194 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ {𝑗} → 𝑖 = 𝑗)
5857adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑖 = 𝑗)
59 simpl2 1065 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑗 ∈ (1...𝑀))
6058, 59eqeltrd 2701 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → 𝑖 ∈ (1...𝑀))
6155, 56, 60, 43syl21anc 1325 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ {𝑗}) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
6254, 61fsumrecl 14465 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) ∈ ℝ)
6352, 62syl 17 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) ∈ ℝ)
6450, 63readdcld 10069 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ∈ ℝ)
65 fzfi 12771 . . . . . . . . . . . . . . 15 (1...𝑀) ∈ Fin
66 diffi 8192 . . . . . . . . . . . . . . 15 ((1...𝑀) ∈ Fin → ((1...𝑀) ∖ {𝑗}) ∈ Fin)
6765, 66mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → ((1...𝑀) ∖ {𝑗}) ∈ Fin)
68 eldifi 3732 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((1...𝑀) ∖ {𝑗}) → 𝑖 ∈ (1...𝑀))
6968, 43sylan2 491 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
7067, 69fsumrecl 14465 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) ∈ ℝ)
7137, 39, 70syl2anc 693 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) ∈ ℝ)
7271, 63readdcld 10069 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ∈ ℝ)
73 00id 10211 . . . . . . . . . . . 12 (0 + 0) = 0
74 simprr 796 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < ((𝐺𝑗)‘𝑡))
758, 7, 21stoweidlem15 40232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑡𝑇) → (((𝐺𝑗)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑗)‘𝑡) ∧ ((𝐺𝑗)‘𝑡) ≤ 1))
7675simp1d 1073 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑡𝑇) → ((𝐺𝑗)‘𝑡) ∈ ℝ)
7737, 51, 39, 76syl21anc 1325 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → ((𝐺𝑗)‘𝑡) ∈ ℝ)
7877recnd 10068 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → ((𝐺𝑗)‘𝑡) ∈ ℂ)
79 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (𝐺𝑖) = (𝐺𝑗))
8079fveq1d 6193 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑗)‘𝑡))
8180sumsn 14475 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (1...𝑀) ∧ ((𝐺𝑗)‘𝑡) ∈ ℂ) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) = ((𝐺𝑗)‘𝑡))
8251, 78, 81syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡) = ((𝐺𝑗)‘𝑡))
8374, 82breqtrrd 4681 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡))
8450, 63, 50, 83ltadd2dd 10196 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (0 + 0) < (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
8573, 84syl5eqbrr 4689 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
86 0red 10041 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → 0 ∈ ℝ)
87703adant2 1080 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) ∈ ℝ)
88 simpll 790 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 𝜑)
8968adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑖 ∈ (1...𝑀))
90 simplr 792 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑡𝑇)
9188, 89, 90, 41syl21anc 1325 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → (((𝐺𝑖)‘𝑡) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))
9291simp2d 1074 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ ((1...𝑀) ∖ {𝑗})) → 0 ≤ ((𝐺𝑖)‘𝑡))
9367, 69, 92fsumge0 14527 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → 0 ≤ Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡))
94933adant2 1080 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → 0 ≤ Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡))
9586, 87, 62, 94leadd1dd 10641 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ≤ (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
9652, 95syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → (0 + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)) ≤ (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
9750, 64, 72, 85, 96ltletrd 10197 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
98 eldifn 3733 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) → ¬ 𝑥 ∈ {𝑗})
99 imnan 438 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ((1...𝑀) ∖ {𝑗}) → ¬ 𝑥 ∈ {𝑗}) ↔ ¬ (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) ∧ 𝑥 ∈ {𝑗}))
10098, 99mpbi 220 . . . . . . . . . . . . . . 15 ¬ (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) ∧ 𝑥 ∈ {𝑗})
101 elin 3796 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((1...𝑀) ∖ {𝑗}) ∩ {𝑗}) ↔ (𝑥 ∈ ((1...𝑀) ∖ {𝑗}) ∧ 𝑥 ∈ {𝑗}))
102100, 101mtbir 313 . . . . . . . . . . . . . 14 ¬ 𝑥 ∈ (((1...𝑀) ∖ {𝑗}) ∩ {𝑗})
103102nel0 3932 . . . . . . . . . . . . 13 (((1...𝑀) ∖ {𝑗}) ∩ {𝑗}) = ∅
104103a1i 11 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (((1...𝑀) ∖ {𝑗}) ∩ {𝑗}) = ∅)
105 undif1 4043 . . . . . . . . . . . . 13 (((1...𝑀) ∖ {𝑗}) ∪ {𝑗}) = ((1...𝑀) ∪ {𝑗})
106 snssi 4339 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → {𝑗} ⊆ (1...𝑀))
1071063ad2ant2 1083 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → {𝑗} ⊆ (1...𝑀))
108 ssequn2 3786 . . . . . . . . . . . . . 14 ({𝑗} ⊆ (1...𝑀) ↔ ((1...𝑀) ∪ {𝑗}) = (1...𝑀))
109107, 108sylib 208 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → ((1...𝑀) ∪ {𝑗}) = (1...𝑀))
110105, 109syl5req 2669 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (1...𝑀) = (((1...𝑀) ∖ {𝑗}) ∪ {𝑗}))
111 fzfid 12772 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → (1...𝑀) ∈ Fin)
112433adantl2 1218 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
113112recnd 10068 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℂ)
114104, 110, 111, 113fsumsplit 14471 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
11552, 114syl 17 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = (Σ𝑖 ∈ ((1...𝑀) ∖ {𝑗})((𝐺𝑖)‘𝑡) + Σ𝑖 ∈ {𝑗} ((𝐺𝑖)‘𝑡)))
11697, 115breqtrrd 4681 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
11736, 45, 49, 116mulgt0d 10192 . . . . . . . 8 (((𝜑𝑡 ∈ (𝑇𝑈)) ∧ (𝑗 ∈ (1...𝑀) ∧ 0 < ((𝐺𝑗)‘𝑡))) → 0 < ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
11830, 31, 35, 117exlimdd 2088 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
1198, 2, 5, 7, 21stoweidlem30 40247 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝑃𝑡) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
12038, 119sylan2 491 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
121118, 120breqtrrd 4681 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < (𝑃𝑡))
122121ex 450 . . . . 5 (𝜑 → (𝑡 ∈ (𝑇𝑈) → 0 < (𝑃𝑡)))
1231, 122ralrimi 2957 . . . 4 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))
12425, 27, 1233jca 1242 . . 3 (𝜑 → (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡)))
125 eleq1 2689 . . . . . 6 (𝑝 = 𝑃 → (𝑝𝐴𝑃𝐴))
126 nfmpt1 4747 . . . . . . . . . 10 𝑡(𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
1272, 126nfcxfr 2762 . . . . . . . . 9 𝑡𝑃
128127nfeq2 2780 . . . . . . . 8 𝑡 𝑝 = 𝑃
129 fveq1 6190 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑡) = (𝑃𝑡))
130129breq2d 4665 . . . . . . . . 9 (𝑝 = 𝑃 → (0 ≤ (𝑝𝑡) ↔ 0 ≤ (𝑃𝑡)))
131129breq1d 4663 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝𝑡) ≤ 1 ↔ (𝑃𝑡) ≤ 1))
132130, 131anbi12d 747 . . . . . . . 8 (𝑝 = 𝑃 → ((0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ↔ (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
133128, 132ralbid 2983 . . . . . . 7 (𝑝 = 𝑃 → (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
134 fveq1 6190 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝𝑍) = (𝑃𝑍))
135134eqeq1d 2624 . . . . . . 7 (𝑝 = 𝑃 → ((𝑝𝑍) = 0 ↔ (𝑃𝑍) = 0))
136129breq2d 4665 . . . . . . . 8 (𝑝 = 𝑃 → (0 < (𝑝𝑡) ↔ 0 < (𝑃𝑡)))
137128, 136ralbid 2983 . . . . . . 7 (𝑝 = 𝑃 → (∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡)))
138133, 135, 1373anbi123d 1399 . . . . . 6 (𝑝 = 𝑃 → ((∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))))
139125, 138anbi12d 747 . . . . 5 (𝑝 = 𝑃 → ((𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))) ↔ (𝑃𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡)))))
140139spcegv 3294 . . . 4 (𝑃𝐴 → ((𝑃𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))) → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))))
14122, 140syl 17 . . 3 (𝜑 → ((𝑃𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ (𝑃𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))) → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))))
14222, 124, 141mp2and 715 . 2 (𝜑 → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
143 df-rex 2918 . 2 (∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
144142, 143sylibr 224 1 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wnf 1708  wcel 1990  wral 2912  wrex 2913  {crab 2916  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  cn 11020  (,)cioo 12175  ...cfz 12326  Σcsu 14416  topGenctg 16098   Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031
This theorem is referenced by:  stoweidlem53  40270
  Copyright terms: Public domain W3C validator