Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem43 Structured version   Visualization version   GIF version

Theorem stoweidlem43 40260
Description: This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function pt in the subalgebra, such that pt( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Hera Z is used for t0 , S is used for t e. T - U , h is used for pt. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem43.1 𝑔𝜑
stoweidlem43.2 𝑡𝜑
stoweidlem43.3 𝑄
stoweidlem43.4 𝐾 = (topGen‘ran (,))
stoweidlem43.5 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem43.6 𝑇 = 𝐽
stoweidlem43.7 (𝜑𝐽 ∈ Comp)
stoweidlem43.8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem43.9 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
stoweidlem43.10 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴)
stoweidlem43.11 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem43.12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡))
stoweidlem43.13 (𝜑𝑈𝐽)
stoweidlem43.14 (𝜑𝑍𝑈)
stoweidlem43.15 (𝜑𝑆 ∈ (𝑇𝑈))
Assertion
Ref Expression
stoweidlem43 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Distinct variable groups:   𝑓,𝑔,𝑙,𝑡,𝐴   𝑓,,𝑇,𝑡   𝑇,𝑙   𝑓,𝑟,𝑔,𝑡,𝐴   𝑥,𝑓,𝑔,𝑡,𝐴   𝑄,𝑓   𝑆,𝑓,𝑔,𝑙,𝑡   𝑓,𝑍,𝑔,𝑙,𝑡   𝜑,𝑓,𝑙   𝐴,   𝑆,   ,𝑍   𝑇,𝑟   𝑆,𝑟   𝜑,𝑟   𝑥,𝑇   𝑥,𝑆   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑔,)   𝑄(𝑥,𝑡,𝑔,,𝑟,𝑙)   𝑇(𝑔)   𝑈(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝐽(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝐾(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝑍(𝑟)

Proof of Theorem stoweidlem43
Dummy variables 𝑘 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem43.1 . . 3 𝑔𝜑
2 nfv 1843 . . 3 𝑔𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)
3 stoweidlem43.15 . . . . . 6 (𝜑𝑆 ∈ (𝑇𝑈))
43eldifad 3586 . . . . 5 (𝜑𝑆𝑇)
5 stoweidlem43.14 . . . . . . 7 (𝜑𝑍𝑈)
6 stoweidlem43.13 . . . . . . 7 (𝜑𝑈𝐽)
7 elunii 4441 . . . . . . 7 ((𝑍𝑈𝑈𝐽) → 𝑍 𝐽)
85, 6, 7syl2anc 693 . . . . . 6 (𝜑𝑍 𝐽)
9 stoweidlem43.6 . . . . . 6 𝑇 = 𝐽
108, 9syl6eleqr 2712 . . . . 5 (𝜑𝑍𝑇)
113eldifbd 3587 . . . . . . 7 (𝜑 → ¬ 𝑆𝑈)
12 nelne2 2891 . . . . . . 7 ((𝑍𝑈 ∧ ¬ 𝑆𝑈) → 𝑍𝑆)
135, 11, 12syl2anc 693 . . . . . 6 (𝜑𝑍𝑆)
1413necomd 2849 . . . . 5 (𝜑𝑆𝑍)
154, 10, 143jca 1242 . . . 4 (𝜑 → (𝑆𝑇𝑍𝑇𝑆𝑍))
16 simpr2 1068 . . . . . 6 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → 𝑍𝑇)
17 stoweidlem43.2 . . . . . . . . 9 𝑡𝜑
18 nfv 1843 . . . . . . . . 9 𝑡(𝑆𝑇𝑍𝑇𝑆𝑍)
1917, 18nfan 1828 . . . . . . . 8 𝑡(𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍))
20 nfv 1843 . . . . . . . 8 𝑡𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)
2119, 20nfim 1825 . . . . . . 7 𝑡((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))
22 eleq1 2689 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑡𝑇𝑍𝑇))
23 neeq2 2857 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑆𝑡𝑆𝑍))
2422, 233anbi23d 1402 . . . . . . . . 9 (𝑡 = 𝑍 → ((𝑆𝑇𝑡𝑇𝑆𝑡) ↔ (𝑆𝑇𝑍𝑇𝑆𝑍)))
2524anbi2d 740 . . . . . . . 8 (𝑡 = 𝑍 → ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) ↔ (𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍))))
26 fveq2 6191 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑔𝑡) = (𝑔𝑍))
2726neeq2d 2854 . . . . . . . . 9 (𝑡 = 𝑍 → ((𝑔𝑆) ≠ (𝑔𝑡) ↔ (𝑔𝑆) ≠ (𝑔𝑍)))
2827rexbidv 3052 . . . . . . . 8 (𝑡 = 𝑍 → (∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡) ↔ ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)))
2925, 28imbi12d 334 . . . . . . 7 (𝑡 = 𝑍 → (((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)) ↔ ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))))
30 simpr1 1067 . . . . . . . 8 ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → 𝑆𝑇)
31 eleq1 2689 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑟𝑇𝑆𝑇))
32 neeq1 2856 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑟𝑡𝑆𝑡))
3331, 323anbi13d 1401 . . . . . . . . . . 11 (𝑟 = 𝑆 → ((𝑟𝑇𝑡𝑇𝑟𝑡) ↔ (𝑆𝑇𝑡𝑇𝑆𝑡)))
3433anbi2d 740 . . . . . . . . . 10 (𝑟 = 𝑆 → ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) ↔ (𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡))))
35 fveq2 6191 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑔𝑟) = (𝑔𝑆))
3635neeq1d 2853 . . . . . . . . . . 11 (𝑟 = 𝑆 → ((𝑔𝑟) ≠ (𝑔𝑡) ↔ (𝑔𝑆) ≠ (𝑔𝑡)))
3736rexbidv 3052 . . . . . . . . . 10 (𝑟 = 𝑆 → (∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡) ↔ ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)))
3834, 37imbi12d 334 . . . . . . . . 9 (𝑟 = 𝑆 → (((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡)) ↔ ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡))))
39 stoweidlem43.12 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡))
4039a1i 11 . . . . . . . . 9 (𝑟𝑇 → ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡)))
4138, 40vtoclga 3272 . . . . . . . 8 (𝑆𝑇 → ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)))
4230, 41mpcom 38 . . . . . . 7 ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡))
4321, 29, 42vtoclg1f 3265 . . . . . 6 (𝑍𝑇 → ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)))
4416, 43mpcom 38 . . . . 5 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))
45 df-rex 2918 . . . . 5 (∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍) ↔ ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
4644, 45sylib 208 . . . 4 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
4715, 46mpdan 702 . . 3 (𝜑 → ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
48 nfv 1843 . . . . . 6 𝑡(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))
4917, 48nfan 1828 . . . . 5 𝑡(𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
50 nfcv 2764 . . . . 5 𝑡𝑔
51 eqid 2622 . . . . 5 (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))
52 stoweidlem43.4 . . . . . . 7 𝐾 = (topGen‘ran (,))
53 eqid 2622 . . . . . . 7 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
54 stoweidlem43.8 . . . . . . . 8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
5554sselda 3603 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓 ∈ (𝐽 Cn 𝐾))
5652, 9, 53, 55fcnre 39184 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
5756adantlr 751 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
58 stoweidlem43.9 . . . . . 6 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
59583adant1r 1319 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
60 stoweidlem43.11 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
6160adantlr 751 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
624adantr 481 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑆𝑇)
6310adantr 481 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑍𝑇)
64 simprl 794 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑔𝐴)
65 simprr 796 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → (𝑔𝑆) ≠ (𝑔𝑍))
6649, 50, 51, 57, 59, 61, 62, 63, 64, 65stoweidlem23 40240 . . . 4 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0))
67 eleq1 2689 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝐴 ↔ (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴))
68 fveq1 6190 . . . . . . . . 9 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝑆) = ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆))
69 fveq1 6190 . . . . . . . . 9 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝑍) = ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍))
7068, 69neeq12d 2855 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝑆) ≠ (𝑓𝑍) ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍)))
7169eqeq1d 2624 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝑍) = 0 ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0))
7267, 70, 713anbi123d 1399 . . . . . . 7 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0)))
7372spcegv 3294 . . . . . 6 ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 → (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)))
74733ad2ant1 1082 . . . . 5 (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)))
7574pm2.43i 52 . . . 4 (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
7666, 75syl 17 . . 3 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
771, 2, 47, 76exlimdd 2088 . 2 (𝜑 → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
78 stoweidlem43.3 . . . . 5 𝑄
79 nfmpt1 4747 . . . . 5 𝑡(𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )))
80 nfcv 2764 . . . . 5 𝑡𝑓
81 nfcv 2764 . . . . 5 𝑡(𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))
82 nfv 1843 . . . . . 6 𝑡(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)
8317, 82nfan 1828 . . . . 5 𝑡(𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
84 stoweidlem43.5 . . . . 5 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
85 fveq2 6191 . . . . . . 7 (𝑠 = 𝑡 → (𝑓𝑠) = (𝑓𝑡))
8685, 85oveq12d 6668 . . . . . 6 (𝑠 = 𝑡 → ((𝑓𝑠) · (𝑓𝑠)) = ((𝑓𝑡) · (𝑓𝑡)))
8786cbvmptv 4750 . . . . 5 (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑓𝑡)))
88 eqid 2622 . . . . 5 sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < ) = sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )
89 eqid 2622 . . . . 5 (𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < ))) = (𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )))
90 stoweidlem43.7 . . . . . 6 (𝜑𝐽 ∈ Comp)
9190adantr 481 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝐽 ∈ Comp)
9254adantr 481 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝐴 ⊆ (𝐽 Cn 𝐾))
93 eleq1 2689 . . . . . . . . 9 (𝑓 = 𝑘 → (𝑓𝐴𝑘𝐴))
94933anbi2d 1404 . . . . . . . 8 (𝑓 = 𝑘 → ((𝜑𝑓𝐴𝑙𝐴) ↔ (𝜑𝑘𝐴𝑙𝐴)))
95 fveq1 6190 . . . . . . . . . . 11 (𝑓 = 𝑘 → (𝑓𝑡) = (𝑘𝑡))
9695oveq1d 6665 . . . . . . . . . 10 (𝑓 = 𝑘 → ((𝑓𝑡) · (𝑙𝑡)) = ((𝑘𝑡) · (𝑙𝑡)))
9796mpteq2dv 4745 . . . . . . . . 9 (𝑓 = 𝑘 → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) = (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))))
9897eleq1d 2686 . . . . . . . 8 (𝑓 = 𝑘 → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴))
9994, 98imbi12d 334 . . . . . . 7 (𝑓 = 𝑘 → (((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴) ↔ ((𝜑𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)))
100 stoweidlem43.10 . . . . . . 7 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴)
10199, 100chvarv 2263 . . . . . 6 ((𝜑𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)
1021013adant1r 1319 . . . . 5 (((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) ∧ 𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)
10360adantlr 751 . . . . 5 (((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
1044adantr 481 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑆𝑇)
10510adantr 481 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑍𝑇)
106 simpr1 1067 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑓𝐴)
107 simpr2 1068 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → (𝑓𝑆) ≠ (𝑓𝑍))
108 simpr3 1069 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → (𝑓𝑍) = 0)
10978, 79, 80, 81, 83, 52, 84, 9, 87, 88, 89, 91, 92, 102, 103, 104, 105, 106, 107, 108stoweidlem36 40253 . . . 4 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → ∃(𝑄 ∧ 0 < (𝑆)))
110109ex 450 . . 3 (𝜑 → ((𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) → ∃(𝑄 ∧ 0 < (𝑆))))
111110exlimdv 1861 . 2 (𝜑 → (∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) → ∃(𝑄 ∧ 0 < (𝑆))))
11277, 111mpd 15 1 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wnf 1708  wcel 1990  wnfc 2751  wne 2794  wral 2912  wrex 2913  {crab 2916  cdif 3571  wss 3574   cuni 4436   class class class wbr 4653  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  (,)cioo 12175  topGenctg 16098   Cn ccn 21028  Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  stoweidlem46  40263
  Copyright terms: Public domain W3C validator