![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f0bi | Structured version Visualization version GIF version |
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.) |
Ref | Expression |
---|---|
f0bi | ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6045 | . . 3 ⊢ (𝐹:∅⟶𝑋 → 𝐹 Fn ∅) | |
2 | fn0 6011 | . . 3 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
3 | 1, 2 | sylib 208 | . 2 ⊢ (𝐹:∅⟶𝑋 → 𝐹 = ∅) |
4 | f0 6086 | . . 3 ⊢ ∅:∅⟶𝑋 | |
5 | feq1 6026 | . . 3 ⊢ (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋)) | |
6 | 4, 5 | mpbiri 248 | . 2 ⊢ (𝐹 = ∅ → 𝐹:∅⟶𝑋) |
7 | 3, 6 | impbii 199 | 1 ⊢ (𝐹:∅⟶𝑋 ↔ 𝐹 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1483 ∅c0 3915 Fn wfn 5883 ⟶wf 5884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 |
This theorem is referenced by: f0dom0 6089 mapdm0 7872 map0e 7895 griedg0ssusgr 26157 rgrusgrprc 26485 mapdm0OLD 39383 2ffzoeq 41338 |
Copyright terms: Public domain | W3C validator |