MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0bi Structured version   Visualization version   GIF version

Theorem f0bi 6088
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Assertion
Ref Expression
f0bi (𝐹:∅⟶𝑋𝐹 = ∅)

Proof of Theorem f0bi
StepHypRef Expression
1 ffn 6045 . . 3 (𝐹:∅⟶𝑋𝐹 Fn ∅)
2 fn0 6011 . . 3 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
31, 2sylib 208 . 2 (𝐹:∅⟶𝑋𝐹 = ∅)
4 f0 6086 . . 3 ∅:∅⟶𝑋
5 feq1 6026 . . 3 (𝐹 = ∅ → (𝐹:∅⟶𝑋 ↔ ∅:∅⟶𝑋))
64, 5mpbiri 248 . 2 (𝐹 = ∅ → 𝐹:∅⟶𝑋)
73, 6impbii 199 1 (𝐹:∅⟶𝑋𝐹 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  c0 3915   Fn wfn 5883  wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892
This theorem is referenced by:  f0dom0  6089  mapdm0  7872  map0e  7895  griedg0ssusgr  26157  rgrusgrprc  26485  mapdm0OLD  39383  2ffzoeq  41338
  Copyright terms: Public domain W3C validator