![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1omvdcnv | Structured version Visualization version GIF version |
Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
f1omvdcnv | ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnvfvb 6535 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ (◡𝐹‘𝑥) = 𝑥)) | |
2 | 1 | 3anidm23 1385 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ (◡𝐹‘𝑥) = 𝑥)) |
3 | 2 | bicomd 213 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑥) = 𝑥)) |
4 | 3 | necon3bid 2838 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) ≠ 𝑥)) |
5 | 4 | rabbidva 3188 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
6 | f1ocnv 6149 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐴) | |
7 | f1ofn 6138 | . . 3 ⊢ (◡𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹 Fn 𝐴) | |
8 | fndifnfp 6442 | . . 3 ⊢ (◡𝐹 Fn 𝐴 → dom (◡𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥}) | |
9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥}) |
10 | f1ofn 6138 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹 Fn 𝐴) | |
11 | fndifnfp 6442 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
13 | 5, 9, 12 | 3eqtr4d 2666 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 {crab 2916 ∖ cdif 3571 I cid 5023 ◡ccnv 5113 dom cdm 5114 Fn wfn 5883 –1-1-onto→wf1o 5887 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
This theorem is referenced by: f1omvdco2 17868 symgsssg 17887 symgfisg 17888 |
Copyright terms: Public domain | W3C validator |