MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco2 Structured version   Visualization version   GIF version

Theorem f1omvdco2 17868
Description: If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)

Proof of Theorem f1omvdco2
StepHypRef Expression
1 excxor 1469 . . 3 ((dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) ↔ ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋)))
2 coass 5654 . . . . . . . . . . . 12 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
3 f1ococnv1 6165 . . . . . . . . . . . . . 14 (𝐹:𝐴1-1-onto𝐴 → (𝐹𝐹) = ( I ↾ 𝐴))
43coeq1d 5283 . . . . . . . . . . . . 13 (𝐹:𝐴1-1-onto𝐴 → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺))
5 f1of 6137 . . . . . . . . . . . . . 14 (𝐺:𝐴1-1-onto𝐴𝐺:𝐴𝐴)
6 fcoi2 6079 . . . . . . . . . . . . . 14 (𝐺:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
75, 6syl 17 . . . . . . . . . . . . 13 (𝐺:𝐴1-1-onto𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
84, 7sylan9eq 2676 . . . . . . . . . . . 12 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
92, 8syl5eqr 2670 . . . . . . . . . . 11 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (𝐹 ∘ (𝐹𝐺)) = 𝐺)
109difeq1d 3727 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = (𝐺 ∖ I ))
1110dmeqd 5326 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = dom (𝐺 ∖ I ))
1211adantr 481 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) = dom (𝐺 ∖ I ))
13 mvdco 17865 . . . . . . . . 9 dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom ((𝐹𝐺) ∖ I ))
14 f1omvdcnv 17864 . . . . . . . . . . . 12 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))
1514ad2antrr 762 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))
16 simprl 794 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
1715, 16eqsstrd 3639 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
18 simprr 796 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
1917, 18unssd 3789 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → (dom (𝐹 ∖ I ) ∪ dom ((𝐹𝐺) ∖ I )) ⊆ 𝑋)
2013, 19syl5ss 3614 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ (𝐹𝐺)) ∖ I ) ⊆ 𝑋)
2112, 20eqsstr3d 3640 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
2221expr 643 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐺 ∖ I ) ⊆ 𝑋))
2322con3d 148 . . . . 5 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐺 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
2423expimpd 629 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
25 coass 5654 . . . . . . . . . . . . 13 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
26 f1ococnv2 6163 . . . . . . . . . . . . . . 15 (𝐺:𝐴1-1-onto𝐴 → (𝐺𝐺) = ( I ↾ 𝐴))
2726coeq2d 5284 . . . . . . . . . . . . . 14 (𝐺:𝐴1-1-onto𝐴 → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ 𝐴)))
28 f1of 6137 . . . . . . . . . . . . . . 15 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
29 fcoi1 6078 . . . . . . . . . . . . . . 15 (𝐹:𝐴𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
3028, 29syl 17 . . . . . . . . . . . . . 14 (𝐹:𝐴1-1-onto𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
3127, 30sylan9eqr 2678 . . . . . . . . . . . . 13 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (𝐹 ∘ (𝐺𝐺)) = 𝐹)
3225, 31syl5eq 2668 . . . . . . . . . . . 12 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((𝐹𝐺) ∘ 𝐺) = 𝐹)
3332difeq1d 3727 . . . . . . . . . . 11 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (((𝐹𝐺) ∘ 𝐺) ∖ I ) = (𝐹 ∖ I ))
3433dmeqd 5326 . . . . . . . . . 10 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) = dom (𝐹 ∖ I ))
3534adantr 481 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) = dom (𝐹 ∖ I ))
36 mvdco 17865 . . . . . . . . . 10 dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) ⊆ (dom ((𝐹𝐺) ∖ I ) ∪ dom (𝐺 ∖ I ))
37 simprr 796 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
38 f1omvdcnv 17864 . . . . . . . . . . . . 13 (𝐺:𝐴1-1-onto𝐴 → dom (𝐺 ∖ I ) = dom (𝐺 ∖ I ))
3938ad2antlr 763 . . . . . . . . . . . 12 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) = dom (𝐺 ∖ I ))
40 simprl 794 . . . . . . . . . . . 12 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
4139, 40eqsstrd 3639 . . . . . . . . . . 11 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋)
4237, 41unssd 3789 . . . . . . . . . 10 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → (dom ((𝐹𝐺) ∖ I ) ∪ dom (𝐺 ∖ I )) ⊆ 𝑋)
4336, 42syl5ss 3614 . . . . . . . . 9 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹𝐺) ∘ 𝐺) ∖ I ) ⊆ 𝑋)
4435, 43eqsstr3d 3640 . . . . . . . 8 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋)
4544expr 643 . . . . . . 7 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐹 ∖ I ) ⊆ 𝑋))
4645con3d 148 . . . . . 6 (((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4746expimpd 629 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐹 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4847ancomsd 470 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
4924, 48jaod 395 . . 3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → (((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
501, 49syl5bi 232 . 2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋))
51503impia 1261 1 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1037  wxo 1464   = wceq 1483  cdif 3571  cun 3572  wss 3574   I cid 5023  ccnv 5113  dom cdm 5114  cres 5116  ccom 5118  wf 5884  1-1-ontowf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  f1omvdco3  17869
  Copyright terms: Public domain W3C validator