MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasssin Structured version   Visualization version   GIF version

Theorem fbasssin 21640
Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.)
Assertion
Ref Expression
fbasssin ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fbasssin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6220 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
2 isfbas2 21639 . . . . . . 7 (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))))
31, 2syl 17 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))))
43ibi 256 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧))))
54simprd 479 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))
65simp3d 1075 . . 3 (𝐹 ∈ (fBas‘𝑋) → ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
7 ineq1 3807 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑧) = (𝐴𝑧))
87sseq2d 3633 . . . . 5 (𝑦 = 𝐴 → (𝑥 ⊆ (𝑦𝑧) ↔ 𝑥 ⊆ (𝐴𝑧)))
98rexbidv 3052 . . . 4 (𝑦 = 𝐴 → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) ↔ ∃𝑥𝐹 𝑥 ⊆ (𝐴𝑧)))
10 ineq2 3808 . . . . . 6 (𝑧 = 𝐵 → (𝐴𝑧) = (𝐴𝐵))
1110sseq2d 3633 . . . . 5 (𝑧 = 𝐵 → (𝑥 ⊆ (𝐴𝑧) ↔ 𝑥 ⊆ (𝐴𝐵)))
1211rexbidv 3052 . . . 4 (𝑧 = 𝐵 → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝑧) ↔ ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
139, 12rspc2v 3322 . . 3 ((𝐴𝐹𝐵𝐹) → (∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
146, 13syl5com 31 . 2 (𝐹 ∈ (fBas‘𝑋) → ((𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
15143impib 1262 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wnel 2897  wral 2912  wrex 2913  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  dom cdm 5114  cfv 5888  fBascfbas 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743
This theorem is referenced by:  fbssfi  21641  fbncp  21643  fbun  21644  fbfinnfr  21645  trfbas2  21647  filin  21658  fgcl  21682  fbasrn  21688
  Copyright terms: Public domain W3C validator