MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbncp Structured version   Visualization version   GIF version

Theorem fbncp 21643
Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbncp ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ (𝐵𝐴) ∈ 𝐹)

Proof of Theorem fbncp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nelfb 21635 . . 3 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
21adantr 481 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ ∅ ∈ 𝐹)
3 fbasssin 21640 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹 ∧ (𝐵𝐴) ∈ 𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)))
4 disjdif 4040 . . . . . . . 8 (𝐴 ∩ (𝐵𝐴)) = ∅
54sseq2i 3630 . . . . . . 7 (𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)) ↔ 𝑥 ⊆ ∅)
6 ss0 3974 . . . . . . 7 (𝑥 ⊆ ∅ → 𝑥 = ∅)
75, 6sylbi 207 . . . . . 6 (𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)) → 𝑥 = ∅)
8 eleq1 2689 . . . . . . 7 (𝑥 = ∅ → (𝑥𝐹 ↔ ∅ ∈ 𝐹))
98biimpac 503 . . . . . 6 ((𝑥𝐹𝑥 = ∅) → ∅ ∈ 𝐹)
107, 9sylan2 491 . . . . 5 ((𝑥𝐹𝑥 ⊆ (𝐴 ∩ (𝐵𝐴))) → ∅ ∈ 𝐹)
1110rexlimiva 3028 . . . 4 (∃𝑥𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)) → ∅ ∈ 𝐹)
123, 11syl 17 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹 ∧ (𝐵𝐴) ∈ 𝐹) → ∅ ∈ 𝐹)
13123expia 1267 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ((𝐵𝐴) ∈ 𝐹 → ∅ ∈ 𝐹))
142, 13mtod 189 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ (𝐵𝐴) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  cdif 3571  cin 3573  wss 3574  c0 3915  cfv 5888  fBascfbas 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743
This theorem is referenced by:  filconn  21687  fgtr  21694  ufilb  21710  ufilmax  21711  ufilen  21734  flimrest  21787  fclsrest  21828  cfilres  23094  relcmpcmet  23115
  Copyright terms: Public domain W3C validator