MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftfund Structured version   Visualization version   GIF version

Theorem fliftfund 6563
Description: The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
fliftfun.4 (𝑥 = 𝑦𝐴 = 𝐶)
fliftfun.5 (𝑥 = 𝑦𝐵 = 𝐷)
fliftfund.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝐴 = 𝐶)) → 𝐵 = 𝐷)
Assertion
Ref Expression
fliftfund (𝜑 → Fun 𝐹)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶   𝑥,𝑦,𝑅   𝑥,𝐷   𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)   𝐹(𝑥)

Proof of Theorem fliftfund
StepHypRef Expression
1 fliftfund.6 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝐴 = 𝐶)) → 𝐵 = 𝐷)
213exp2 1285 . . . 4 (𝜑 → (𝑥𝑋 → (𝑦𝑋 → (𝐴 = 𝐶𝐵 = 𝐷))))
32imp32 449 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐴 = 𝐶𝐵 = 𝐷))
43ralrimivva 2971 . 2 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐴 = 𝐶𝐵 = 𝐷))
5 flift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
6 flift.2 . . 3 ((𝜑𝑥𝑋) → 𝐴𝑅)
7 flift.3 . . 3 ((𝜑𝑥𝑋) → 𝐵𝑆)
8 fliftfun.4 . . 3 (𝑥 = 𝑦𝐴 = 𝐶)
9 fliftfun.5 . . 3 (𝑥 = 𝑦𝐵 = 𝐷)
105, 6, 7, 8, 9fliftfun 6562 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑋𝑦𝑋 (𝐴 = 𝐶𝐵 = 𝐷)))
114, 10mpbird 247 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cop 4183  cmpt 4729  ran crn 5115  Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  cygznlem2a  19916  pi1xfrf  22853  pi1cof  22859
  Copyright terms: Public domain W3C validator