| Step | Hyp | Ref
| Expression |
| 1 | | pi1co.g |
. . . 4
⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔](
≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) |
| 2 | | fvex 6201 |
. . . . 5
⊢ (
≃ph‘𝐽) ∈ V |
| 3 | | ecexg 7746 |
. . . . 5
⊢ ((
≃ph‘𝐽) ∈ V → [𝑔]( ≃ph‘𝐽) ∈ V) |
| 4 | 2, 3 | mp1i 13 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → [𝑔]( ≃ph‘𝐽) ∈ V) |
| 5 | | pi1co.q |
. . . . 5
⊢ 𝑄 = (𝐾 π1 𝐵) |
| 6 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑄) =
(Base‘𝑄) |
| 7 | | pi1co.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 8 | | cntop2 21045 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| 9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Top) |
| 10 | | eqid 2622 |
. . . . . . . 8
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 11 | 10 | toptopon 20722 |
. . . . . . 7
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 12 | 9, 11 | sylib 208 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 13 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 14 | | pi1co.b |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) |
| 15 | | pi1co.j |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 16 | | cnf2 21053 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶∪ 𝐾) |
| 17 | 15, 12, 7, 16 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑋⟶∪ 𝐾) |
| 18 | | pi1co.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 19 | 17, 18 | ffvelrnd 6360 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐴) ∈ ∪ 𝐾) |
| 20 | 14, 19 | eqeltrrd 2702 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ∪ 𝐾) |
| 21 | 20 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → 𝐵 ∈ ∪ 𝐾) |
| 22 | | pi1co.p |
. . . . . . . . 9
⊢ 𝑃 = (𝐽 π1 𝐴) |
| 23 | | pi1co.v |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑃) |
| 24 | 23 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 = (Base‘𝑃)) |
| 25 | 22, 15, 18, 24 | pi1eluni 22842 |
. . . . . . . 8
⊢ (𝜑 → (𝑔 ∈ ∪ 𝑉 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴))) |
| 26 | 25 | biimpa 501 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴)) |
| 27 | 26 | simp1d 1073 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → 𝑔 ∈ (II Cn 𝐽)) |
| 28 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 29 | | cnco 21070 |
. . . . . 6
⊢ ((𝑔 ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∘ 𝑔) ∈ (II Cn 𝐾)) |
| 30 | 27, 28, 29 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → (𝐹 ∘ 𝑔) ∈ (II Cn 𝐾)) |
| 31 | | iitopon 22682 |
. . . . . . . . 9
⊢ II ∈
(TopOn‘(0[,]1)) |
| 32 | 31 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → II ∈
(TopOn‘(0[,]1))) |
| 33 | 15 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → 𝐽 ∈ (TopOn‘𝑋)) |
| 34 | | cnf2 21053 |
. . . . . . . 8
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (II Cn 𝐽)) → 𝑔:(0[,]1)⟶𝑋) |
| 35 | 32, 33, 27, 34 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → 𝑔:(0[,]1)⟶𝑋) |
| 36 | | 0elunit 12290 |
. . . . . . 7
⊢ 0 ∈
(0[,]1) |
| 37 | | fvco3 6275 |
. . . . . . 7
⊢ ((𝑔:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) →
((𝐹 ∘ 𝑔)‘0) = (𝐹‘(𝑔‘0))) |
| 38 | 35, 36, 37 | sylancl 694 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → ((𝐹 ∘ 𝑔)‘0) = (𝐹‘(𝑔‘0))) |
| 39 | 26 | simp2d 1074 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → (𝑔‘0) = 𝐴) |
| 40 | 39 | fveq2d 6195 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → (𝐹‘(𝑔‘0)) = (𝐹‘𝐴)) |
| 41 | 14 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → (𝐹‘𝐴) = 𝐵) |
| 42 | 38, 40, 41 | 3eqtrd 2660 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → ((𝐹 ∘ 𝑔)‘0) = 𝐵) |
| 43 | | 1elunit 12291 |
. . . . . . 7
⊢ 1 ∈
(0[,]1) |
| 44 | | fvco3 6275 |
. . . . . . 7
⊢ ((𝑔:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) →
((𝐹 ∘ 𝑔)‘1) = (𝐹‘(𝑔‘1))) |
| 45 | 35, 43, 44 | sylancl 694 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → ((𝐹 ∘ 𝑔)‘1) = (𝐹‘(𝑔‘1))) |
| 46 | 26 | simp3d 1075 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → (𝑔‘1) = 𝐴) |
| 47 | 46 | fveq2d 6195 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → (𝐹‘(𝑔‘1)) = (𝐹‘𝐴)) |
| 48 | 45, 47, 41 | 3eqtrd 2660 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → ((𝐹 ∘ 𝑔)‘1) = 𝐵) |
| 49 | 5, 6, 13, 21, 30, 42, 48 | elpi1i 22846 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝑉) → [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾) ∈ (Base‘𝑄)) |
| 50 | | eceq1 7782 |
. . . 4
⊢ (𝑔 = ℎ → [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽)) |
| 51 | | coeq2 5280 |
. . . . 5
⊢ (𝑔 = ℎ → (𝐹 ∘ 𝑔) = (𝐹 ∘ ℎ)) |
| 52 | 51 | eceq1d 7783 |
. . . 4
⊢ (𝑔 = ℎ → [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾) = [(𝐹 ∘ ℎ)]( ≃ph‘𝐾)) |
| 53 | | phtpcer 22794 |
. . . . . 6
⊢ (
≃ph‘𝐾) Er (II Cn 𝐾) |
| 54 | 53 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → (
≃ph‘𝐾) Er (II Cn 𝐾)) |
| 55 | | simpr3 1069 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽)) |
| 56 | | phtpcer 22794 |
. . . . . . . . 9
⊢ (
≃ph‘𝐽) Er (II Cn 𝐽) |
| 57 | 56 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → (
≃ph‘𝐽) Er (II Cn 𝐽)) |
| 58 | | simpr1 1067 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → 𝑔 ∈ ∪ 𝑉) |
| 59 | 25 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → (𝑔 ∈ ∪ 𝑉 ↔ (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴))) |
| 60 | 58, 59 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → (𝑔 ∈ (II Cn 𝐽) ∧ (𝑔‘0) = 𝐴 ∧ (𝑔‘1) = 𝐴)) |
| 61 | 60 | simp1d 1073 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → 𝑔 ∈ (II Cn 𝐽)) |
| 62 | 57, 61 | erth 7791 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → (𝑔( ≃ph‘𝐽)ℎ ↔ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) |
| 63 | 55, 62 | mpbird 247 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → 𝑔( ≃ph‘𝐽)ℎ) |
| 64 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 65 | 63, 64 | phtpcco2 22799 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → (𝐹 ∘ 𝑔)( ≃ph‘𝐾)(𝐹 ∘ ℎ)) |
| 66 | 54, 65 | erthi 7793 |
. . . 4
⊢ ((𝜑 ∧ (𝑔 ∈ ∪ 𝑉 ∧ ℎ ∈ ∪ 𝑉 ∧ [𝑔]( ≃ph‘𝐽) = [ℎ]( ≃ph‘𝐽))) → [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾) = [(𝐹 ∘ ℎ)]( ≃ph‘𝐾)) |
| 67 | 1, 4, 49, 50, 52, 66 | fliftfund 6563 |
. . 3
⊢ (𝜑 → Fun 𝐺) |
| 68 | 1, 4, 49 | fliftf 6565 |
. . 3
⊢ (𝜑 → (Fun 𝐺 ↔ 𝐺:ran (𝑔 ∈ ∪ 𝑉 ↦ [𝑔]( ≃ph‘𝐽))⟶(Base‘𝑄))) |
| 69 | 67, 68 | mpbid 222 |
. 2
⊢ (𝜑 → 𝐺:ran (𝑔 ∈ ∪ 𝑉 ↦ [𝑔]( ≃ph‘𝐽))⟶(Base‘𝑄)) |
| 70 | 22, 15, 18, 24 | pi1bas2 22841 |
. . . 4
⊢ (𝜑 → 𝑉 = (∪ 𝑉 / (
≃ph‘𝐽))) |
| 71 | | df-qs 7748 |
. . . . 5
⊢ (∪ 𝑉
/ ( ≃ph‘𝐽)) = {𝑠 ∣ ∃𝑔 ∈ ∪ 𝑉𝑠 = [𝑔]( ≃ph‘𝐽)} |
| 72 | | eqid 2622 |
. . . . . 6
⊢ (𝑔 ∈ ∪ 𝑉
↦ [𝑔](
≃ph‘𝐽)) = (𝑔 ∈ ∪ 𝑉 ↦ [𝑔]( ≃ph‘𝐽)) |
| 73 | 72 | rnmpt 5371 |
. . . . 5
⊢ ran
(𝑔 ∈ ∪ 𝑉
↦ [𝑔](
≃ph‘𝐽)) = {𝑠 ∣ ∃𝑔 ∈ ∪ 𝑉𝑠 = [𝑔]( ≃ph‘𝐽)} |
| 74 | 71, 73 | eqtr4i 2647 |
. . . 4
⊢ (∪ 𝑉
/ ( ≃ph‘𝐽)) = ran (𝑔 ∈ ∪ 𝑉 ↦ [𝑔]( ≃ph‘𝐽)) |
| 75 | 70, 74 | syl6eq 2672 |
. . 3
⊢ (𝜑 → 𝑉 = ran (𝑔 ∈ ∪ 𝑉 ↦ [𝑔]( ≃ph‘𝐽))) |
| 76 | 75 | feq2d 6031 |
. 2
⊢ (𝜑 → (𝐺:𝑉⟶(Base‘𝑄) ↔ 𝐺:ran (𝑔 ∈ ∪ 𝑉 ↦ [𝑔]( ≃ph‘𝐽))⟶(Base‘𝑄))) |
| 77 | 69, 76 | mpbird 247 |
1
⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑄)) |