MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimapr Structured version   Visualization version   GIF version

Theorem fnimapr 6262
Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
fnimapr ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹𝐵), (𝐹𝐶)})

Proof of Theorem fnimapr
StepHypRef Expression
1 fnsnfv 6258 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
213adant3 1081 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
3 fnsnfv 6258 . . . . 5 ((𝐹 Fn 𝐴𝐶𝐴) → {(𝐹𝐶)} = (𝐹 “ {𝐶}))
433adant2 1080 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → {(𝐹𝐶)} = (𝐹 “ {𝐶}))
52, 4uneq12d 3768 . . 3 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → ({(𝐹𝐵)} ∪ {(𝐹𝐶)}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})))
65eqcomd 2628 . 2 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹𝐵)} ∪ {(𝐹𝐶)}))
7 df-pr 4180 . . . 4 {𝐵, 𝐶} = ({𝐵} ∪ {𝐶})
87imaeq2i 5464 . . 3 (𝐹 “ {𝐵, 𝐶}) = (𝐹 “ ({𝐵} ∪ {𝐶}))
9 imaundi 5545 . . 3 (𝐹 “ ({𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶}))
108, 9eqtri 2644 . 2 (𝐹 “ {𝐵, 𝐶}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶}))
11 df-pr 4180 . 2 {(𝐹𝐵), (𝐹𝐶)} = ({(𝐹𝐵)} ∪ {(𝐹𝐶)})
126, 10, 113eqtr4g 2681 1 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹𝐵), (𝐹𝐶)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  cun 3572  {csn 4177  {cpr 4179  cima 5117   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  fvinim0ffz  12587  mrcun  16282  poimirlem1  33410  poimirlem9  33418  imarnf1pr  41301
  Copyright terms: Public domain W3C validator