MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcun Structured version   Visualization version   GIF version

Theorem mrcun 16282
Description: Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcun ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈𝑉)) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))

Proof of Theorem mrcun
StepHypRef Expression
1 simp1 1061 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 mre1cl 16254 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
3 elpw2g 4827 . . . . . . 7 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
42, 3syl 17 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
54biimpar 502 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
653adant3 1081 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝑈 ∈ 𝒫 𝑋)
7 elpw2g 4827 . . . . . . 7 (𝑋𝐶 → (𝑉 ∈ 𝒫 𝑋𝑉𝑋))
82, 7syl 17 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑉 ∈ 𝒫 𝑋𝑉𝑋))
98biimpar 502 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉𝑋) → 𝑉 ∈ 𝒫 𝑋)
1093adant2 1080 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝑉 ∈ 𝒫 𝑋)
11 prssi 4353 . . . 4 ((𝑈 ∈ 𝒫 𝑋𝑉 ∈ 𝒫 𝑋) → {𝑈, 𝑉} ⊆ 𝒫 𝑋)
126, 10, 11syl2anc 693 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → {𝑈, 𝑉} ⊆ 𝒫 𝑋)
13 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
1413mrcuni 16281 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑈, 𝑉} ⊆ 𝒫 𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹 (𝐹 “ {𝑈, 𝑉})))
151, 12, 14syl2anc 693 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹 (𝐹 “ {𝑈, 𝑉})))
16 uniprg 4450 . . . 4 ((𝑈 ∈ 𝒫 𝑋𝑉 ∈ 𝒫 𝑋) → {𝑈, 𝑉} = (𝑈𝑉))
176, 10, 16syl2anc 693 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → {𝑈, 𝑉} = (𝑈𝑉))
1817fveq2d 6195 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹‘(𝑈𝑉)))
1913mrcf 16269 . . . . . . . 8 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
20 ffn 6045 . . . . . . . 8 (𝐹:𝒫 𝑋𝐶𝐹 Fn 𝒫 𝑋)
2119, 20syl 17 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
22213ad2ant1 1082 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝐹 Fn 𝒫 𝑋)
23 fnimapr 6262 . . . . . 6 ((𝐹 Fn 𝒫 𝑋𝑈 ∈ 𝒫 𝑋𝑉 ∈ 𝒫 𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
2422, 6, 10, 23syl3anc 1326 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
2524unieqd 4446 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
26 fvex 6201 . . . . 5 (𝐹𝑈) ∈ V
27 fvex 6201 . . . . 5 (𝐹𝑉) ∈ V
2826, 27unipr 4449 . . . 4 {(𝐹𝑈), (𝐹𝑉)} = ((𝐹𝑈) ∪ (𝐹𝑉))
2925, 28syl6eq 2672 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = ((𝐹𝑈) ∪ (𝐹𝑉)))
3029fveq2d 6195 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 (𝐹 “ {𝑈, 𝑉})) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))
3115, 18, 303eqtr3d 2664 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈𝑉)) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  cun 3572  wss 3574  𝒫 cpw 4158  {cpr 4179   cuni 4436  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  Moorecmre 16242  mrClscmrc 16243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-mrc 16247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator