MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmptf Structured version   Visualization version   GIF version

Theorem fnmptf 6016
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypothesis
Ref Expression
mptfnf.0 𝑥𝐴
Assertion
Ref Expression
fnmptf (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)

Proof of Theorem fnmptf
StepHypRef Expression
1 elex 3212 . . 3 (𝐵𝑉𝐵 ∈ V)
21ralimi 2952 . 2 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
3 mptfnf.0 . . 3 𝑥𝐴
43mptfnf 6015 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
52, 4sylib 208 1 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1990  wnfc 2751  wral 2912  Vcvv 3200  cmpt 4729   Fn wfn 5883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-fun 5890  df-fn 5891
This theorem is referenced by:  offval2f  6909  esumgsum  30107  esumc  30113  bj-mptval  33070  rfovcnvf1od  38298  dssmapf1od  38315  ntrrn  38420  dssmapntrcls  38426
  Copyright terms: Public domain W3C validator