![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapf1od | Structured version Visualization version GIF version |
Description: For any base set 𝐵 the duality operator for self-mappings of subsets of that base set is one-to-one and onto. (Contributed by RP, 21-Apr-2021.) |
Ref | Expression |
---|---|
dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
dssmapf1od | ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
2 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | 1, 2, 3 | dssmapfvd 38311 | . . 3 ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
5 | pwexg 4850 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V) | |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
7 | mptexg 6484 | . . . . . 6 ⊢ (𝒫 𝐵 ∈ V → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V) |
9 | 8 | ralrimivw 2967 | . . . 4 ⊢ (𝜑 → ∀𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V) |
10 | nfcv 2764 | . . . . 5 ⊢ Ⅎ𝑓(𝒫 𝐵 ↑𝑚 𝒫 𝐵) | |
11 | 10 | fnmptf 6016 | . . . 4 ⊢ (∀𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V → (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
13 | fneq1 5979 | . . . 4 ⊢ (𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) → (𝐷 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↔ (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵))) | |
14 | 13 | biimprd 238 | . . 3 ⊢ (𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) → ((𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵) → 𝐷 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵))) |
15 | 4, 12, 14 | sylc 65 | . 2 ⊢ (𝜑 → 𝐷 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
16 | 1, 2, 3 | dssmapnvod 38314 | . 2 ⊢ (𝜑 → ◡𝐷 = 𝐷) |
17 | nvof1o 6536 | . 2 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑𝑚 𝒫 𝐵) ∧ ◡𝐷 = 𝐷) → 𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) | |
18 | 15, 16, 17 | syl2anc 693 | 1 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ∖ cdif 3571 𝒫 cpw 4158 ↦ cmpt 4729 ◡ccnv 5113 Fn wfn 5883 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
This theorem is referenced by: dssmap2d 38316 ntrclsf1o 38349 clsneif1o 38402 clsneikex 38404 clsneinex 38405 clsneiel1 38406 neicvgf1o 38412 neicvgmex 38415 neicvgel1 38417 dssmapntrcls 38426 dssmapclsntr 38427 |
Copyright terms: Public domain | W3C validator |