| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnrel | Structured version Visualization version GIF version | ||
| Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnrel | ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5988 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | funrel 5905 | . 2 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5119 Fun wfun 5882 Fn wfn 5883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-fun 5890 df-fn 5891 |
| This theorem is referenced by: fnbr 5993 fnresdm 6000 idssxp 6009 fn0 6011 frel 6050 fcoi2 6079 f1rel 6104 f1ocnv 6149 dffn5 6241 feqmptdf 6251 fnsnfv 6258 fconst5 6471 fnex 6481 fnexALT 7132 tz7.48-2 7537 resfnfinfin 8246 zorn2lem4 9321 imasvscafn 16197 2oppchomf 16384 fnunres1 29417 bnj66 30930 rtrclex 37924 fnresdmss 39348 dfafn5a 41240 |
| Copyright terms: Public domain | W3C validator |