| Step | Hyp | Ref
| Expression |
| 1 | | pm3.24 926 |
. 2
⊢ ¬
(ran 𝐹 ∈ V ∧ ¬
ran 𝐹 ∈
V) |
| 2 | | df-ne 2795 |
. . . . 5
⊢ (𝐷 ≠ ∅ ↔ ¬ 𝐷 = ∅) |
| 3 | 2 | ralbii 2980 |
. . . 4
⊢
(∀𝑥 ∈ On
𝐷 ≠ ∅ ↔
∀𝑥 ∈ On ¬
𝐷 =
∅) |
| 4 | | df-ral 2917 |
. . . 4
⊢
(∀𝑥 ∈ On
𝐷 ≠ ∅ ↔
∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) |
| 5 | | ralnex 2992 |
. . . 4
⊢
(∀𝑥 ∈ On
¬ 𝐷 = ∅ ↔
¬ ∃𝑥 ∈ On
𝐷 =
∅) |
| 6 | 3, 4, 5 | 3bitr3i 290 |
. . 3
⊢
(∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) ↔ ¬
∃𝑥 ∈ On 𝐷 = ∅) |
| 7 | | weso 5105 |
. . . . . . . . 9
⊢ (𝑤 We 𝐴 → 𝑤 Or 𝐴) |
| 8 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝑤 Or 𝐴) |
| 9 | | vex 3203 |
. . . . . . . 8
⊢ 𝑤 ∈ V |
| 10 | | soex 7109 |
. . . . . . . 8
⊢ ((𝑤 Or 𝐴 ∧ 𝑤 ∈ V) → 𝐴 ∈ V) |
| 11 | 8, 9, 10 | sylancl 694 |
. . . . . . 7
⊢ ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝐴 ∈ V) |
| 12 | | zorn2lem.3 |
. . . . . . . . . . 11
⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
| 13 | 12 | tfr1 7493 |
. . . . . . . . . 10
⊢ 𝐹 Fn On |
| 14 | | fvelrnb 6243 |
. . . . . . . . . 10
⊢ (𝐹 Fn On → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹‘𝑥) = 𝑦)) |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹‘𝑥) = 𝑦) |
| 16 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑤 We 𝐴 |
| 17 | | nfa1 2028 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) |
| 18 | 16, 17 | nfan 1828 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) |
| 19 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 20 | | zorn2lem.5 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} |
| 21 | | ssrab2 3687 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} ⊆ 𝐴 |
| 22 | 20, 21 | eqsstri 3635 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐷 ⊆ 𝐴 |
| 23 | | zorn2lem.4 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
| 24 | 12, 23, 20 | zorn2lem1 9318 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) |
| 25 | 22, 24 | sseldi 3601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐴) |
| 26 | | eleq1 2689 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 27 | 25, 26 | syl5ibcom 235 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴)) |
| 28 | 27 | exp32 631 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴)))) |
| 29 | 28 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴)))) |
| 30 | 29 | a2d 29 |
. . . . . . . . . . . 12
⊢ (𝑤 We 𝐴 → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴)))) |
| 31 | 30 | spsd 2057 |
. . . . . . . . . . 11
⊢ (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴)))) |
| 32 | 31 | imp 445 |
. . . . . . . . . 10
⊢ ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑥 ∈ On → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴))) |
| 33 | 18, 19, 32 | rexlimd 3026 |
. . . . . . . . 9
⊢ ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (∃𝑥 ∈ On (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴)) |
| 34 | 15, 33 | syl5bi 232 |
. . . . . . . 8
⊢ ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐴)) |
| 35 | 34 | ssrdv 3609 |
. . . . . . 7
⊢ ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹 ⊆ 𝐴) |
| 36 | 11, 35 | ssexd 4805 |
. . . . . 6
⊢ ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹 ∈ V) |
| 37 | 36 | ex 450 |
. . . . 5
⊢ (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V)) |
| 38 | 37 | adantl 482 |
. . . 4
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V)) |
| 39 | 12, 23, 20 | zorn2lem3 9320 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
| 40 | 39 | exp45 642 |
. . . . . . . . . . . . 13
⊢ (𝑅 Po 𝐴 → (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦)))))) |
| 41 | 40 | com23 86 |
. . . . . . . . . . . 12
⊢ (𝑅 Po 𝐴 → (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦)))))) |
| 42 | 41 | imp 445 |
. . . . . . . . . . 11
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))))) |
| 43 | 42 | a2d 29 |
. . . . . . . . . 10
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))))) |
| 44 | 43 | imp4a 614 |
. . . . . . . . 9
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦)))) |
| 45 | 44 | alrimdv 1857 |
. . . . . . . 8
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑦((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦)))) |
| 46 | 45 | alimdv 1845 |
. . . . . . 7
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥∀𝑦((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦)))) |
| 47 | | r2al 2939 |
. . . . . . 7
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ 𝑥 ¬ (𝐹‘𝑥) = (𝐹‘𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
| 48 | 46, 47 | syl6ibr 242 |
. . . . . 6
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥 ∈ On ∀𝑦 ∈ 𝑥 ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
| 49 | | ssid 3624 |
. . . . . . . 8
⊢ On
⊆ On |
| 50 | 13 | tz7.48lem 7536 |
. . . . . . . 8
⊢ ((On
⊆ On ∧ ∀𝑥
∈ On ∀𝑦 ∈
𝑥 ¬ (𝐹‘𝑥) = (𝐹‘𝑦)) → Fun ◡(𝐹 ↾ On)) |
| 51 | 49, 50 | mpan 706 |
. . . . . . 7
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ 𝑥 ¬ (𝐹‘𝑥) = (𝐹‘𝑦) → Fun ◡(𝐹 ↾ On)) |
| 52 | | fnrel 5989 |
. . . . . . . . . . 11
⊢ (𝐹 Fn On → Rel 𝐹) |
| 53 | 13, 52 | ax-mp 5 |
. . . . . . . . . 10
⊢ Rel 𝐹 |
| 54 | | fndm 5990 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn On → dom 𝐹 = On) |
| 55 | 13, 54 | ax-mp 5 |
. . . . . . . . . . 11
⊢ dom 𝐹 = On |
| 56 | 55 | eqimssi 3659 |
. . . . . . . . . 10
⊢ dom 𝐹 ⊆ On |
| 57 | | relssres 5437 |
. . . . . . . . . 10
⊢ ((Rel
𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹) |
| 58 | 53, 56, 57 | mp2an 708 |
. . . . . . . . 9
⊢ (𝐹 ↾ On) = 𝐹 |
| 59 | 58 | cnveqi 5297 |
. . . . . . . 8
⊢ ◡(𝐹 ↾ On) = ◡𝐹 |
| 60 | 59 | funeqi 5909 |
. . . . . . 7
⊢ (Fun
◡(𝐹 ↾ On) ↔ Fun ◡𝐹) |
| 61 | 51, 60 | sylib 208 |
. . . . . 6
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ 𝑥 ¬ (𝐹‘𝑥) = (𝐹‘𝑦) → Fun ◡𝐹) |
| 62 | 48, 61 | syl6 35 |
. . . . 5
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → Fun ◡𝐹)) |
| 63 | | onprc 6984 |
. . . . . 6
⊢ ¬ On
∈ V |
| 64 | | funrnex 7133 |
. . . . . . . 8
⊢ (dom
◡𝐹 ∈ V → (Fun ◡𝐹 → ran ◡𝐹 ∈ V)) |
| 65 | 64 | com12 32 |
. . . . . . 7
⊢ (Fun
◡𝐹 → (dom ◡𝐹 ∈ V → ran ◡𝐹 ∈ V)) |
| 66 | | df-rn 5125 |
. . . . . . . 8
⊢ ran 𝐹 = dom ◡𝐹 |
| 67 | 66 | eleq1i 2692 |
. . . . . . 7
⊢ (ran
𝐹 ∈ V ↔ dom ◡𝐹 ∈ V) |
| 68 | | dfdm4 5316 |
. . . . . . . . 9
⊢ dom 𝐹 = ran ◡𝐹 |
| 69 | 55, 68 | eqtr3i 2646 |
. . . . . . . 8
⊢ On = ran
◡𝐹 |
| 70 | 69 | eleq1i 2692 |
. . . . . . 7
⊢ (On
∈ V ↔ ran ◡𝐹 ∈ V) |
| 71 | 65, 67, 70 | 3imtr4g 285 |
. . . . . 6
⊢ (Fun
◡𝐹 → (ran 𝐹 ∈ V → On ∈
V)) |
| 72 | 63, 71 | mtoi 190 |
. . . . 5
⊢ (Fun
◡𝐹 → ¬ ran 𝐹 ∈ V) |
| 73 | 62, 72 | syl6 35 |
. . . 4
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ¬ ran 𝐹 ∈ V)) |
| 74 | 38, 73 | jcad 555 |
. . 3
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V))) |
| 75 | 6, 74 | syl5bir 233 |
. 2
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → (¬ ∃𝑥 ∈ On 𝐷 = ∅ → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V))) |
| 76 | 1, 75 | mt3i 141 |
1
⊢ ((𝑅 Po 𝐴 ∧ 𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅) |