![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn5 | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dffn5 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5989 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | dfrel4v 5584 | . . . . 5 ⊢ (Rel 𝐹 ↔ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) | |
3 | 1, 2 | sylib 208 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
4 | fnbr 5993 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
5 | 4 | ex 450 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
6 | 5 | pm4.71rd 667 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
7 | eqcom 2629 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
8 | fnbrfvb 6236 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
9 | 7, 8 | syl5bb 272 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
10 | 9 | pm5.32da 673 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
11 | 6, 10 | bitr4d 271 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)))) |
12 | 11 | opabbidv 4716 | . . . 4 ⊢ (𝐹 Fn 𝐴 → {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
13 | 3, 12 | eqtrd 2656 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
14 | df-mpt 4730 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} | |
15 | 13, 14 | syl6eqr 2674 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
16 | fvex 6201 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
17 | eqid 2622 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) | |
18 | 16, 17 | fnmpti 6022 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴 |
19 | fneq1 5979 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴)) | |
20 | 18, 19 | mpbiri 248 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → 𝐹 Fn 𝐴) |
21 | 15, 20 | impbii 199 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 {copab 4712 ↦ cmpt 4729 Rel wrel 5119 Fn wfn 5883 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
This theorem is referenced by: fnrnfv 6242 feqmptd 6249 dffn5f 6252 eqfnfv 6311 fndmin 6324 fcompt 6400 funiun 6412 resfunexg 6479 eufnfv 6491 nvocnv 6537 fnov 6768 offveqb 6919 caofinvl 6924 oprabco 7261 df1st2 7263 df2nd2 7264 curry1 7269 curry2 7272 resixpfo 7946 pw2f1olem 8064 marypha2lem3 8343 seqof 12858 prmrec 15626 prdsbascl 16143 xpsaddlem 16235 xpsvsca 16239 oppccatid 16379 fuclid 16626 fucrid 16627 curfuncf 16878 yonedainv 16921 yonffthlem 16922 prdsidlem 17322 pws0g 17326 prdsinvlem 17524 gsummptmhm 18340 staffn 18849 prdslmodd 18969 ofco2 20257 1mavmul 20354 cnmpt1st 21471 cnmpt2nd 21472 ptunhmeo 21611 xpsxmetlem 22184 xpsmet 22187 itg2split 23516 pserulm 24176 pserdvlem2 24182 logcn 24393 logblog 24530 emcllem5 24726 gamcvg2lem 24785 crctcshlem4 26712 eucrct2eupth 27105 fcomptf 29458 gsummpt2d 29781 pl1cn 30001 esumpcvgval 30140 esumcvgsum 30150 eulerpartgbij 30434 dstfrvclim1 30539 ptpconn 31215 knoppcnlem8 32490 knoppcnlem11 32493 curfv 33389 ovoliunnfl 33451 voliunnfl 33453 fnopabco 33517 upixp 33524 prdsbnd 33592 prdstotbnd 33593 prdsbnd2 33594 fgraphopab 37788 expgrowthi 38532 expgrowth 38534 uzmptshftfval 38545 dvcosre 40126 fourierdlem56 40379 fourierdlem62 40385 fdmdifeqresdif 42120 offvalfv 42121 |
Copyright terms: Public domain | W3C validator |