MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq123d Structured version   Visualization version   GIF version

Theorem foeq123d 6132
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1 (𝜑𝐹 = 𝐺)
f1eq123d.2 (𝜑𝐴 = 𝐵)
f1eq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
foeq123d (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐵onto𝐷))

Proof of Theorem foeq123d
StepHypRef Expression
1 f1eq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 foeq1 6111 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐶𝐺:𝐴onto𝐶))
31, 2syl 17 . 2 (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐴onto𝐶))
4 f1eq123d.2 . . 3 (𝜑𝐴 = 𝐵)
5 foeq2 6112 . . 3 (𝐴 = 𝐵 → (𝐺:𝐴onto𝐶𝐺:𝐵onto𝐶))
64, 5syl 17 . 2 (𝜑 → (𝐺:𝐴onto𝐶𝐺:𝐵onto𝐶))
7 f1eq123d.3 . . 3 (𝜑𝐶 = 𝐷)
8 foeq3 6113 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵onto𝐶𝐺:𝐵onto𝐷))
97, 8syl 17 . 2 (𝜑 → (𝐺:𝐵onto𝐶𝐺:𝐵onto𝐷))
103, 6, 93bitrd 294 1 (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐵onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  ontowfo 5886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-fo 5894
This theorem is referenced by:  fullfo  16572  cofull  16594  resgrpplusfrn  17436  efabl  24296  iseupth  27061
  Copyright terms: Public domain W3C validator