Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege109d Structured version   Visualization version   GIF version

Theorem frege109d 38049
Description: If 𝐴 contains all elements of 𝑈 and all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 38266. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege109d.r (𝜑𝑅 ∈ V)
frege109d.a (𝜑𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))
Assertion
Ref Expression
frege109d (𝜑 → (𝑅𝐴) ⊆ 𝐴)

Proof of Theorem frege109d
StepHypRef Expression
1 frege109d.r . . . . 5 (𝜑𝑅 ∈ V)
2 trclfvlb 13749 . . . . 5 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
3 imass1 5500 . . . . 5 (𝑅 ⊆ (t+‘𝑅) → (𝑅𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
41, 2, 33syl 18 . . . 4 (𝜑 → (𝑅𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
5 coss1 5277 . . . . . . 7 (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
61, 2, 53syl 18 . . . . . 6 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
7 trclfvcotrg 13757 . . . . . 6 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
86, 7syl6ss 3615 . . . . 5 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
9 imass1 5500 . . . . 5 ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
108, 9syl 17 . . . 4 (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
114, 10unssd 3789 . . 3 (𝜑 → ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ ((t+‘𝑅) “ 𝑈))
12 ssun2 3777 . . 3 ((t+‘𝑅) “ 𝑈) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))
1311, 12syl6ss 3615 . 2 (𝜑 → ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))
14 frege109d.a . . . 4 (𝜑𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))
1514imaeq2d 5466 . . 3 (𝜑 → (𝑅𝐴) = (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))))
16 imaundi 5545 . . . 4 (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈)))
17 imaco 5640 . . . . . 6 ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈))
1817eqcomi 2631 . . . . 5 (𝑅 “ ((t+‘𝑅) “ 𝑈)) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)
1918uneq2i 3764 . . . 4 ((𝑅𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈))) = ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))
2016, 19eqtri 2644 . . 3 (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))
2115, 20syl6eq 2672 . 2 (𝜑 → (𝑅𝐴) = ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)))
2213, 21, 143sstr4d 3648 1 (𝜑 → (𝑅𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  wss 3574  cima 5117  ccom 5118  cfv 5888  t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-trcl 13726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator