Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege109d Structured version   Visualization version   Unicode version

Theorem frege109d 38049
Description: If  A contains all elements of  U and all elements after those in  U in the transitive closure of  R, then the image under  R of  A is a subclass of  A. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 38266. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege109d.r  |-  ( ph  ->  R  e.  _V )
frege109d.a  |-  ( ph  ->  A  =  ( U  u.  ( ( t+ `  R )
" U ) ) )
Assertion
Ref Expression
frege109d  |-  ( ph  ->  ( R " A
)  C_  A )

Proof of Theorem frege109d
StepHypRef Expression
1 frege109d.r . . . . 5  |-  ( ph  ->  R  e.  _V )
2 trclfvlb 13749 . . . . 5  |-  ( R  e.  _V  ->  R  C_  ( t+ `  R ) )
3 imass1 5500 . . . . 5  |-  ( R 
C_  ( t+ `  R )  -> 
( R " U
)  C_  ( (
t+ `  R
) " U ) )
41, 2, 33syl 18 . . . 4  |-  ( ph  ->  ( R " U
)  C_  ( (
t+ `  R
) " U ) )
5 coss1 5277 . . . . . . 7  |-  ( R 
C_  ( t+ `  R )  -> 
( R  o.  (
t+ `  R
) )  C_  (
( t+ `  R )  o.  (
t+ `  R
) ) )
61, 2, 53syl 18 . . . . . 6  |-  ( ph  ->  ( R  o.  (
t+ `  R
) )  C_  (
( t+ `  R )  o.  (
t+ `  R
) ) )
7 trclfvcotrg 13757 . . . . . 6  |-  ( ( t+ `  R
)  o.  ( t+ `  R ) )  C_  ( t+ `  R )
86, 7syl6ss 3615 . . . . 5  |-  ( ph  ->  ( R  o.  (
t+ `  R
) )  C_  (
t+ `  R
) )
9 imass1 5500 . . . . 5  |-  ( ( R  o.  ( t+ `  R ) )  C_  ( t+ `  R )  ->  ( ( R  o.  ( t+ `  R ) )
" U )  C_  ( ( t+ `  R ) " U ) )
108, 9syl 17 . . . 4  |-  ( ph  ->  ( ( R  o.  ( t+ `  R ) ) " U )  C_  (
( t+ `  R ) " U
) )
114, 10unssd 3789 . . 3  |-  ( ph  ->  ( ( R " U )  u.  (
( R  o.  (
t+ `  R
) ) " U
) )  C_  (
( t+ `  R ) " U
) )
12 ssun2 3777 . . 3  |-  ( ( t+ `  R
) " U ) 
C_  ( U  u.  ( ( t+ `  R ) " U ) )
1311, 12syl6ss 3615 . 2  |-  ( ph  ->  ( ( R " U )  u.  (
( R  o.  (
t+ `  R
) ) " U
) )  C_  ( U  u.  ( (
t+ `  R
) " U ) ) )
14 frege109d.a . . . 4  |-  ( ph  ->  A  =  ( U  u.  ( ( t+ `  R )
" U ) ) )
1514imaeq2d 5466 . . 3  |-  ( ph  ->  ( R " A
)  =  ( R
" ( U  u.  ( ( t+ `  R ) " U ) ) ) )
16 imaundi 5545 . . . 4  |-  ( R
" ( U  u.  ( ( t+ `  R ) " U ) ) )  =  ( ( R
" U )  u.  ( R " (
( t+ `  R ) " U
) ) )
17 imaco 5640 . . . . . 6  |-  ( ( R  o.  ( t+ `  R ) ) " U )  =  ( R "
( ( t+ `  R ) " U ) )
1817eqcomi 2631 . . . . 5  |-  ( R
" ( ( t+ `  R )
" U ) )  =  ( ( R  o.  ( t+ `  R ) )
" U )
1918uneq2i 3764 . . . 4  |-  ( ( R " U )  u.  ( R "
( ( t+ `  R ) " U ) ) )  =  ( ( R
" U )  u.  ( ( R  o.  ( t+ `  R ) ) " U ) )
2016, 19eqtri 2644 . . 3  |-  ( R
" ( U  u.  ( ( t+ `  R ) " U ) ) )  =  ( ( R
" U )  u.  ( ( R  o.  ( t+ `  R ) ) " U ) )
2115, 20syl6eq 2672 . 2  |-  ( ph  ->  ( R " A
)  =  ( ( R " U )  u.  ( ( R  o.  ( t+ `  R ) )
" U ) ) )
2213, 21, 143sstr4d 3648 1  |-  ( ph  ->  ( R " A
)  C_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   "cima 5117    o. ccom 5118   ` cfv 5888   t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-trcl 13726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator