Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  freld Structured version   Visualization version   GIF version

Theorem freld 39425
Description: A mapping is a relation. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
freld.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
freld (𝜑 → Rel 𝐹)

Proof of Theorem freld
StepHypRef Expression
1 freld.1 . 2 (𝜑𝐹:𝐴𝐵)
2 frel 6050 . 2 (𝐹:𝐴𝐵 → Rel 𝐹)
31, 2syl 17 1 (𝜑 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5119  wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-fun 5890  df-fn 5891  df-f 5892
This theorem is referenced by:  limsupvaluz  39940  sssmf  40947
  Copyright terms: Public domain W3C validator