| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1843 |
. 2
⊢
Ⅎ𝑎𝜑 |
| 2 | | sssmf.s |
. 2
⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 3 | | inss2 3834 |
. . 3
⊢ (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹 |
| 4 | | sssmf.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| 5 | | eqid 2622 |
. . . 4
⊢ dom 𝐹 = dom 𝐹 |
| 6 | 2, 4, 5 | smfdmss 40942 |
. . 3
⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 7 | 3, 6 | syl5ss 3614 |
. 2
⊢ (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ ∪ 𝑆) |
| 8 | 2, 4, 5 | smff 40941 |
. . . . 5
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 9 | 3 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹) |
| 10 | | fssres 6070 |
. . . . 5
⊢ ((𝐹:dom 𝐹⟶ℝ ∧ (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ) |
| 11 | 8, 9, 10 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ) |
| 12 | 8 | freld 39425 |
. . . . . . 7
⊢ (𝜑 → Rel 𝐹) |
| 13 | | resindm 5444 |
. . . . . . 7
⊢ (Rel
𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹 ↾ 𝐵)) |
| 14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹 ↾ 𝐵)) |
| 15 | 14 | eqcomd 2628 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹))) |
| 16 | | dmres 5419 |
. . . . . 6
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
| 17 | 16 | a1i 11 |
. . . . 5
⊢ (𝜑 → dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹)) |
| 18 | 15, 17 | feq12d 6033 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ 𝐵):dom (𝐹 ↾ 𝐵)⟶ℝ ↔ (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ)) |
| 19 | 11, 18 | mpbird 247 |
. . 3
⊢ (𝜑 → (𝐹 ↾ 𝐵):dom (𝐹 ↾ 𝐵)⟶ℝ) |
| 20 | 17 | feq2d 6031 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ 𝐵):dom (𝐹 ↾ 𝐵)⟶ℝ ↔ (𝐹 ↾ 𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ)) |
| 21 | 19, 20 | mpbid 222 |
. 2
⊢ (𝜑 → (𝐹 ↾ 𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ) |
| 22 | 2 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 23 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 24 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) |
| 25 | 22, 23, 5, 24 | smfpreimalt 40940 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 26 | 4 | dmexd 39422 |
. . . . . 6
⊢ (𝜑 → dom 𝐹 ∈ V) |
| 27 | | elrest 16088 |
. . . . . 6
⊢ ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))) |
| 28 | 2, 26, 27 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))) |
| 29 | 28 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))) |
| 30 | 25, 29 | mpbid 222 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) |
| 31 | | elinel1 3799 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥 ∈ 𝐵) |
| 32 | 31 | fvresd 6208 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) |
| 33 | 32 | breq1d 4663 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → (((𝐹 ↾ 𝐵)‘𝑥) < 𝑎 ↔ (𝐹‘𝑥) < 𝑎)) |
| 34 | 33 | rabbiia 3185 |
. . . . . . . . . 10
⊢ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} |
| 35 | 34 | a1i 11 |
. . . . . . . . 9
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 36 | | rabss2 3685 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∩ dom 𝐹) ⊆ dom 𝐹 → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
| 37 | 3, 36 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} |
| 38 | | id 22 |
. . . . . . . . . . . . 13
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) |
| 39 | | inss1 3833 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∩ dom 𝐹) ⊆ 𝑤 |
| 40 | 39 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) ⊆ 𝑤) |
| 41 | 38, 40 | eqsstrd 3639 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ⊆ 𝑤) |
| 42 | 37, 41 | syl5ss 3614 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ 𝑤) |
| 43 | | ssrab2 3687 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹) |
| 44 | 43 | a1i 11 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹)) |
| 45 | 42, 44 | ssind 3837 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
| 46 | | nfrab1 3122 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} |
| 47 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑤 ∩ dom 𝐹) |
| 48 | 46, 47 | nfeq 2776 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) |
| 49 | | elinel2 3800 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝐵 ∩ dom 𝐹)) |
| 50 | 49 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝐵 ∩ dom 𝐹)) |
| 51 | | elinel1 3799 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ 𝑤) |
| 52 | 3 | sseli 3599 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹) |
| 53 | 49, 52 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹) |
| 54 | 51, 53 | elind 3798 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝑤 ∩ dom 𝐹)) |
| 55 | 54 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝑤 ∩ dom 𝐹)) |
| 56 | 38 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
| 57 | 56 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
| 58 | 55, 57 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
| 59 | | rabid 3116 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) < 𝑎)) |
| 60 | 59 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} → (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) < 𝑎)) |
| 61 | 60 | simprd 479 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} → (𝐹‘𝑥) < 𝑎) |
| 62 | 58, 61 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝐹‘𝑥) < 𝑎) |
| 63 | 50, 62 | jca 554 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹‘𝑥) < 𝑎)) |
| 64 | | rabid 3116 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹‘𝑥) < 𝑎)) |
| 65 | 63, 64 | sylibr 224 |
. . . . . . . . . . . . . . . 16
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 66 | 65 | ex 450 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎})) |
| 67 | 48, 66 | ralrimi 2957 |
. . . . . . . . . . . . . 14
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 68 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑤 ∩ (𝐵 ∩ dom 𝐹)) |
| 69 | | nfrab1 3122 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥{𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} |
| 70 | 68, 69 | dfss3f 3595 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ↔ ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 71 | 67, 70 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 72 | 71 | sseld 3602 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎})) |
| 73 | 48, 72 | ralrimi 2957 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 74 | 73, 70 | sylibr 224 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 75 | 45, 74 | eqssd 3620 |
. . . . . . . . 9
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
| 76 | 35, 75 | eqtrd 2656 |
. . . . . . . 8
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
| 77 | 76 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
| 78 | 77 | 3adant2 1080 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
| 79 | 22 | 3ad2ant1 1082 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑆 ∈ SAlg) |
| 80 | | simp1l 1085 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝜑) |
| 81 | 26, 9 | ssexd 4805 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ∩ dom 𝐹) ∈ V) |
| 82 | 80, 81 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝐵 ∩ dom 𝐹) ∈ V) |
| 83 | | simp2 1062 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑤 ∈ 𝑆) |
| 84 | | eqid 2622 |
. . . . . . 7
⊢ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) = (𝑤 ∩ (𝐵 ∩ dom 𝐹)) |
| 85 | 79, 82, 83, 84 | elrestd 39291 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))) |
| 86 | 78, 85 | eqeltrd 2701 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))) |
| 87 | 86 | 3exp 1264 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑤 ∈ 𝑆 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))))) |
| 88 | 87 | rexlimdv 3030 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹)))) |
| 89 | 30, 88 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))) |
| 90 | 1, 2, 7, 21, 89 | issmfd 40944 |
1
⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ (SMblFn‘𝑆)) |