HomeHome Metamath Proof Explorer
Theorem List (p. 395 of 426)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 39401-39500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreminmap 39401 Intersection of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑍)       (𝜑 → ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)) = ((𝐴𝐵) ↑𝑚 𝐶))
 
Theoremfcoss 39402 Composition of two mappings. Similar to fco 6058, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐺:𝐷𝐶)       (𝜑 → (𝐹𝐺):𝐷𝐵)
 
Theoremfsneqrn 39403 Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   𝐵 = {𝐴}    &   (𝜑𝐹 Fn 𝐵)    &   (𝜑𝐺 Fn 𝐵)       (𝜑 → (𝐹 = 𝐺 ↔ (𝐹𝐴) ∈ ran 𝐺))
 
Theoremdifmapsn 39404 Difference of two sets exponentiatiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑍)       (𝜑 → ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶})) = ((𝐴𝐵) ↑𝑚 {𝐶}))
 
Theoremmapssbi 39405 Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑍)    &   (𝜑𝐶 ≠ ∅)       (𝜑 → (𝐴𝐵 ↔ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)))
 
Theoremunirnmapsn 39406 Equality theorem for a subset of a set exponentiation, where the exponent is a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐶 = {𝐴}    &   (𝜑𝑋 ⊆ (𝐵𝑚 𝐶))       (𝜑𝑋 = (ran 𝑋𝑚 𝐶))
 
Theoremiunmapss 39407* The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑥𝜑    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥𝐴) → 𝐵𝑊)       (𝜑 𝑥𝐴 (𝐵𝑚 𝐶) ⊆ ( 𝑥𝐴 𝐵𝑚 𝐶))
 
Theoremssmapsn 39408* A subset 𝐶 of a set exponentiation to a singleton, is its projection 𝐷 exponentiated to the singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑓𝐷    &   (𝜑𝐴𝑉)    &   (𝜑𝐶 ⊆ (𝐵𝑚 {𝐴}))    &   𝐷 = 𝑓𝐶 ran 𝑓       (𝜑𝐶 = (𝐷𝑚 {𝐴}))
 
Theoremiunmapsn 39409* The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑥𝜑    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥𝐴) → 𝐵𝑊)    &   (𝜑𝐶𝑍)       (𝜑 𝑥𝐴 (𝐵𝑚 {𝐶}) = ( 𝑥𝐴 𝐵𝑚 {𝐶}))
 
Theoremabsfico 39410 Mapping domain and codomain of the absolute value function. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
abs:ℂ⟶(0[,)+∞)
 
Theoremicof 39411 The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
[,):(ℝ* × ℝ*)⟶𝒫 ℝ*
 
Theoremrnmpt0 39412* The range of a function in map-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   𝐹 = (𝑥𝐴𝐵)       (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
 
Theoremrnmptn0 39413* The range of a function in map-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   𝐹 = (𝑥𝐴𝐵)    &   (𝜑𝐴 ≠ ∅)       (𝜑 → ran 𝐹 ≠ ∅)
 
Theoremelpmrn 39414 The range of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝐹 ∈ (𝐴pm 𝐵) → ran 𝐹𝐴)
 
Theoremimaexi 39415 The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐴𝑉       (𝐴𝐵) ∈ V
 
Theoremaxccdom 39416* Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝑋 ≼ ω)    &   ((𝜑𝑧𝑋) → 𝑧 ≠ ∅)       (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
 
Theoremdmmptdf 39417* The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝜑    &   𝐴 = (𝑥𝐵𝐶)    &   ((𝜑𝑥𝐵) → 𝐶𝑉)       (𝜑 → dom 𝐴 = 𝐵)
 
Theoremelpmi2 39418 The domain of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝐹 ∈ (𝐴pm 𝐵) → dom 𝐹𝐵)
 
Theoremdmrelrnrel 39419* A relation preserving function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)))    &   (𝜑𝐵𝐴)    &   (𝜑𝐶𝐴)    &   (𝜑𝐵𝑅𝐶)       (𝜑 → (𝐹𝐵)𝑆(𝐹𝐶))
 
Theoremfdmd 39420 The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐹:𝐴𝐵)       (𝜑 → dom 𝐹 = 𝐴)
 
Theoremfco3 39421 Functionality of a composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑 → Fun 𝐹)    &   (𝜑 → Fun 𝐺)       (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
 
Theoremdmexd 39422 The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴𝑉)       (𝜑 → dom 𝐴 ∈ V)
 
Theoremfvcod 39423 Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑 → Fun 𝐺)    &   (𝜑𝐴 ∈ dom 𝐺)    &   𝐻 = (𝐹𝐺)       (𝜑 → (𝐻𝐴) = (𝐹‘(𝐺𝐴)))
 
Theoremfcod 39424 Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐹:𝐵𝐶)    &   (𝜑𝐺:𝐴𝐵)       (𝜑 → (𝐹𝐺):𝐴𝐶)
 
Theoremfreld 39425 A mapping is a relation. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐹:𝐴𝐵)       (𝜑 → Rel 𝐹)
 
Theoremfrnd 39426 The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐹:𝐴𝐵)       (𝜑 → ran 𝐹𝐵)
 
Theoremelrnmpt2id 39427* Membership in the range of an operation class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝑥𝐴𝑦𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝐶𝑉) → (𝑥𝐹𝑦) ∈ ran 𝐹)
 
Theoremfvmptelrn 39428* A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
(𝜑 → (𝑥𝐴𝐵):𝐴𝐶)       ((𝜑𝑥𝐴) → 𝐵𝐶)
 
Theoremaxccd 39429* An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ≈ ω)    &   ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)       (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
 
Theoremaxccd2 39430* An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ≼ ω)    &   ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)       (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
 
Theoremfunimassd 39431* Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑 → Fun 𝐹)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)       (𝜑 → (𝐹𝐴) ⊆ 𝐵)
 
Theoremfimassd 39432 The image of a class is a subset of its codomain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐹:𝐴𝐵)       (𝜑 → (𝐹𝑋) ⊆ 𝐵)
 
Theoremfeqresmptf 39433* Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐹    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
 
Theoremfnmptd 39434* The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   𝐹 = (𝑥𝐴𝐵)       (𝜑𝐹 Fn 𝐴)
 
Theoremelrnmpt1d 39435 Elementhood in an image set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝐹 = (𝑥𝐴𝐵)    &   (𝜑𝑥𝐴)    &   (𝜑𝐵𝑉)       (𝜑𝐵 ∈ ran 𝐹)
 
Theoremdmresss 39436 The domain of a restriction is a subset of the original domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
dom (𝐴𝐵) ⊆ dom 𝐴
 
Theoremmptima 39437* Image of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
 
Theoremdmmptssf 39438 The domain of a mapping is a subset of its base class. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐴    &   𝐹 = (𝑥𝐴𝐵)       dom 𝐹𝐴
 
Theoremdmmptdf2 39439 The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   𝑥𝐵    &   𝐴 = (𝑥𝐵𝐶)    &   ((𝜑𝑥𝐵) → 𝐶𝑉)       (𝜑 → dom 𝐴 = 𝐵)
 
Theoremdmuz 39440 Domain of the upper integers function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
dom ℤ = ℤ
 
Theoremfndmd 39441 The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐹 Fn 𝐴)       (𝜑 → dom 𝐹 = 𝐴)
 
Theoremfmptd2f 39442* Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
 
Theoremmpteq1df 39443 An equality theorem for the maps to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
 
Theoremmptexf 39444 If the domain of a function given by maps-to notation is a set, the function is a set. Inference version of mptexg 6484. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐴    &   𝐴 ∈ V       (𝑥𝐴𝐵) ∈ V
 
Theoremfvmptd2 39445* Deduction version of fvmpt 6282. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝐹 = (𝑥𝐷𝐵)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑉)       (𝜑 → (𝐹𝐴) = 𝐶)
 
Theoremfvmpt4 39446* Value of a function given by the "maps to" notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
 
Theoremfvmptd3 39447* Deduction version of fvmpt 6282. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝐹 = (𝑥𝐷𝐵)    &   (𝑥 = 𝐴𝐵 = 𝐶)    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑉)       (𝜑 → (𝐹𝐴) = 𝐶)
 
Theoremfmptf 39448* Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐵    &   𝐹 = (𝑥𝐴𝐶)       (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
 
Theoremresimass 39449 The image of a restriction is a subset of the original image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
((𝐴𝐵) “ 𝐶) ⊆ (𝐴𝐶)
 
Theoremmptssid 39450 The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐴    &   𝐶 = {𝑥𝐴𝐵 ∈ V}       (𝑥𝐴𝐵) = (𝑥𝐶𝐵)
 
Theoremmptfnd 39451 The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.)
𝑥𝐴    &   𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
 
Theoremmpteq12da 39452 An equality inference for the maps to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴 = 𝐶)    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremrnmptlb 39453* Boundness below of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
 
Theoremelpreimad 39454 Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐵𝐴)    &   (𝜑 → (𝐹𝐵) ∈ 𝐶)       (𝜑𝐵 ∈ (𝐹𝐶))
 
Theoremrnmptbddlem 39455* Boundness of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
 
Theoremrnmptbdd 39456* Boundness of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
 
Theoremmptima2 39457* Image of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐶𝐴)       (𝜑 → ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥𝐶𝐵))
 
Theoremfvelimad 39458* Function value in an image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐹    &   (𝜑𝐹 Fn 𝐴)    &   (𝜑𝐶 ∈ (𝐹𝐵))       (𝜑 → ∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶)
 
Theoremfnfvimad 39459 A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐵𝐴)    &   (𝜑𝐵𝐶)       (𝜑 → (𝐹𝐵) ∈ (𝐹𝐶))
 
Theoremfmptd2 39460* Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
 
Theoremfunimaeq 39461* Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑 → Fun 𝐹)    &   (𝜑 → Fun 𝐺)    &   (𝜑𝐴 ⊆ dom 𝐹)    &   (𝜑𝐴 ⊆ dom 𝐺)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))       (𝜑 → (𝐹𝐴) = (𝐺𝐴))
 
Theoremrnmptssf 39462* The range of an operation given by the "maps to" notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐶    &   𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
 
Theoremrnmptbd2lem 39463* Boundness below of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
 
Theoremrnmptbd2 39464* Boundness below of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
 
Theoreminfnsuprnmpt 39465* The indexed infimum of real numbers is the negative of the indexed supremum of the negative values. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)       (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
 
Theoremsuprclrnmpt 39466* Closure of the indexed supremum of a nonempty bounded set of reals. Range of a function in map-to notation can be used, to express an indexed supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)       (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) ∈ ℝ)
 
Theoremsuprubrnmpt2 39467* A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷 ∈ ℝ)    &   (𝑥 = 𝐶𝐵 = 𝐷)       (𝜑𝐷 ≤ sup(ran (𝑥𝐴𝐵), ℝ, < ))
 
Theoremsuprubrnmpt 39468* A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)       ((𝜑𝑥𝐴) → 𝐵 ≤ sup(ran (𝑥𝐴𝐵), ℝ, < ))
 
Theoremrnmptssdf 39469* The range of an operation given by the "maps to" notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   𝑥𝐶    &   𝐹 = (𝑥𝐴𝐵)    &   ((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 → ran 𝐹𝐶)
 
Theoremrnmptbdlem 39470* Boundness above of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   𝑦𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
 
Theoremrnmptbd 39471* Boundness above of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
 
Theoremrnmptss2 39472* The range of an operation given by the "maps to" notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴𝐵)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)       (𝜑 → ran (𝑥𝐴𝐶) ⊆ ran (𝑥𝐵𝐶))
 
Theoremelmptima 39473* The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝐶𝑉 → (𝐶 ∈ ((𝑥𝐴𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴𝐷)𝐶 = 𝐵))
 
Theoremralrnmpt3 39474* A restricted quantifier over an image set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝑦 = 𝐵 → (𝜓𝜒))       (𝜑 → (∀𝑦 ∈ ran (𝑥𝐴𝐵)𝜓 ↔ ∀𝑥𝐴 𝜒))
 
Theoremfvelima2 39475* Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
((𝐹 Fn 𝐴𝐵 ∈ (𝐹𝐶)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
 
Theoremfunresd 39476 A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑 → Fun 𝐹)       (𝜑 → Fun (𝐹𝐴))
 
Theoremrnmptssbi 39477* The range of an operation given by the "maps to" notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   𝐹 = (𝑥𝐴𝐵)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       (𝜑 → (ran 𝐹𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
 
Theoremfnfvima2 39478 Given an element of the preimage, its function value is in the image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐵𝐴)    &   (𝜑𝐵𝐶)       (𝜑 → (𝐹𝐵) ∈ (𝐹𝐶))
 
Theoremfnfvelrnd 39479 A function's value belongs to its range. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐵𝐴)       (𝜑 → (𝐹𝐵) ∈ ran 𝐹)
 
Theoremimass2d 39480 Subset theorem for image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴𝐵)       (𝜑 → (𝐶𝐴) ⊆ (𝐶𝐵))
 
Theoremimassmpt 39481* Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵𝑉)    &   𝐹 = (𝑥𝐴𝐵)       (𝜑 → ((𝐹𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴𝐶)𝐵𝐷))
 
Theoremfnssresd 39482 Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐵𝐴)       (𝜑 → (𝐹𝐵) Fn 𝐵)
 
Theoremfpmd 39483 A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝐴)    &   (𝜑𝐹:𝐶𝐵)       (𝜑𝐹 ∈ (𝐵pm 𝐴))
 
Theoremfconst7 39484* An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
𝑥𝜑    &   𝑥𝐹    &   (𝜑𝐹 Fn 𝐴)    &   (𝜑𝐵𝑉)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)       (𝜑𝐹 = (𝐴 × {𝐵}))
 
20.32.3  Ordering on real numbers - Real and complex numbers basic operations
 
Theoremsub2times 39485 Subtracting from a number, twice the number itself, gives negative the number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴)
 
Theoremxrltled 39486 'Less than' implies 'less than or equal to', for extended reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴𝐵)
 
Theoremabssubrp 39487 The distance of two distinct complex number is a strictly positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) ∈ ℝ+)
 
Theoremelfzfzo 39488 Relationship between membership in a half open finite set of sequential integers and membership in a finite set of sequential intergers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝐴 ∈ (𝑀..^𝑁) ↔ (𝐴 ∈ (𝑀...𝑁) ∧ 𝐴 < 𝑁))
 
Theoremoddfl 39489 Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1))
 
Theoremabscosbd 39490 Bound for the absolute value of the cosine of a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝐴 ∈ ℝ → (abs‘(cos‘𝐴)) ≤ 1)
 
Theoremmul13d 39491 Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴)))
 
Theoremnegpilt0 39492 Negative π is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
-π < 0
 
Theoremdstregt0 39493* A complex number 𝐴 that is not real, has a distance from the reals that is strictly larger than 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ (ℂ ∖ ℝ))       (𝜑 → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
 
Theoremsubadd4b 39494 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴𝐵) + (𝐶𝐷)) = ((𝐴𝐷) + (𝐶𝐵)))
 
Theoremxrlttri5d 39495 Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴𝐵)    &   (𝜑 → ¬ 𝐵 < 𝐴)       (𝜑𝐴 < 𝐵)
 
Theoremneglt 39496 The negative of a positive number is less than the number itself. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝐴 ∈ ℝ+ → -𝐴 < 𝐴)
 
Theoremzltlesub 39497 If an integer 𝑁 is smaller or equal to a real, and we subtract a quantity smaller than 1, then 𝑁 is smaller or equal to the result. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝑁 ∈ ℤ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 < 1)    &   (𝜑 → (𝐴𝐵) ∈ ℤ)       (𝜑𝑁 ≤ (𝐴𝐵))
 
Theoremdivlt0gt0d 39498 The ratio of a negative numerator and a positive denominator is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐴 < 0)       (𝜑 → (𝐴 / 𝐵) < 0)
 
Theoremsubsub23d 39499 Swap subtrahend and result of subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐴𝐶) = 𝐵))
 
Theorem2timesgt 39500 Double of a positive real is larger than the real itself. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝐴 ∈ ℝ+𝐴 < (2 · 𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >