Step | Hyp | Ref
| Expression |
1 | | eqid 2622 |
. . 3
⊢ (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
2 | | limsupvaluz.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
3 | | limsupvaluz.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | | fvex 6201 |
. . . . . . 7
⊢
(ℤ≥‘𝑀) ∈ V |
5 | 3, 4 | eqeltri 2697 |
. . . . . 6
⊢ 𝑍 ∈ V |
6 | 5 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ V) |
7 | 2, 6 | fexd 39296 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ V) |
8 | 7 | elexd 3214 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
9 | | uzssre 39620 |
. . . . 5
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
10 | 3, 9 | eqsstri 3635 |
. . . 4
⊢ 𝑍 ⊆
ℝ |
11 | 10 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑍 ⊆ ℝ) |
12 | | limsupvaluz.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
13 | 3 | uzsup 12662 |
. . . 4
⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) =
+∞) |
14 | 12, 13 | syl 17 |
. . 3
⊢ (𝜑 → sup(𝑍, ℝ*, < ) =
+∞) |
15 | 1, 8, 11, 14 | limsupval2 14211 |
. 2
⊢ (𝜑 → (lim sup‘𝐹) = inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) “ 𝑍), ℝ*, <
)) |
16 | 11 | mptima2 39457 |
. . . 4
⊢ (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) “ 𝑍) = ran (𝑖 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
17 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑛 → (𝑖[,)+∞) = (𝑛[,)+∞)) |
18 | 17 | imaeq2d 5466 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑛 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑛[,)+∞))) |
19 | 18 | ineq1d 3813 |
. . . . . . . . 9
⊢ (𝑖 = 𝑛 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) =
((𝐹 “ (𝑛[,)+∞)) ∩
ℝ*)) |
20 | 19 | supeq1d 8352 |
. . . . . . . 8
⊢ (𝑖 = 𝑛 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
21 | 20 | cbvmptv 4750 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
22 | 21 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
23 | | fimass 6081 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑍⟶ℝ* → (𝐹 “ (𝑛[,)+∞)) ⊆
ℝ*) |
24 | 2, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 “ (𝑛[,)+∞)) ⊆
ℝ*) |
25 | | df-ss 3588 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*
↔ ((𝐹 “ (𝑛[,)+∞)) ∩
ℝ*) = (𝐹
“ (𝑛[,)+∞))) |
26 | 25 | biimpi 206 |
. . . . . . . . . . 11
⊢ ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*
→ ((𝐹 “ (𝑛[,)+∞)) ∩
ℝ*) = (𝐹
“ (𝑛[,)+∞))) |
27 | 24, 26 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) =
(𝐹 “ (𝑛[,)+∞))) |
28 | 27 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) =
(𝐹 “ (𝑛[,)+∞))) |
29 | | df-ima 5127 |
. . . . . . . . . 10
⊢ (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞)) |
30 | 29 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞))) |
31 | 2 | freld 39425 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Rel 𝐹) |
32 | | resindm 5444 |
. . . . . . . . . . . . 13
⊢ (Rel
𝐹 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞))) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞))) |
34 | 33 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞))) |
35 | | incom 3805 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛[,)+∞) ∩ 𝑍) = (𝑍 ∩ (𝑛[,)+∞)) |
36 | 3 | ineq1i 3810 |
. . . . . . . . . . . . . . 15
⊢ (𝑍 ∩ (𝑛[,)+∞)) =
((ℤ≥‘𝑀) ∩ (𝑛[,)+∞)) |
37 | 35, 36 | eqtri 2644 |
. . . . . . . . . . . . . 14
⊢ ((𝑛[,)+∞) ∩ 𝑍) =
((ℤ≥‘𝑀) ∩ (𝑛[,)+∞)) |
38 | 37 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ≥‘𝑀) ∩ (𝑛[,)+∞))) |
39 | 2 | fdmd 39420 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝐹 = 𝑍) |
40 | 39 | ineq2d 3814 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍)) |
41 | 40 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍)) |
42 | 3 | eleq2i 2693 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
43 | 42 | biimpi 206 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑀)) |
44 | 43 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (ℤ≥‘𝑀)) |
45 | 44 | uzinico2 39789 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) =
((ℤ≥‘𝑀) ∩ (𝑛[,)+∞))) |
46 | 38, 41, 45 | 3eqtr4d 2666 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = (ℤ≥‘𝑛)) |
47 | 46 | reseq2d 5396 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (ℤ≥‘𝑛))) |
48 | 34, 47 | eqtr3d 2658 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 ↾ (𝑛[,)+∞)) = (𝐹 ↾ (ℤ≥‘𝑛))) |
49 | 48 | rneqd 5353 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ran (𝐹 ↾ (𝑛[,)+∞)) = ran (𝐹 ↾ (ℤ≥‘𝑛))) |
50 | 28, 30, 49 | 3eqtrd 2660 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) =
ran (𝐹 ↾
(ℤ≥‘𝑛))) |
51 | 50 | supeq1d 8352 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)) |
52 | 51 | mpteq2dva 4744 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))) |
53 | 22, 52 | eqtrd 2656 |
. . . . 5
⊢ (𝜑 → (𝑖 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))) |
54 | 53 | rneqd 5353 |
. . . 4
⊢ (𝜑 → ran (𝑖 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) = ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))) |
55 | 16, 54 | eqtrd 2656 |
. . 3
⊢ (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) “ 𝑍) = ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))) |
56 | 55 | infeq1d 8383 |
. 2
⊢ (𝜑 → inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) “ 𝑍), ℝ*, < ) = inf(ran
(𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ*, < )) |
57 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑘)) |
58 | 57 | reseq2d 5396 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝐹 ↾ (ℤ≥‘𝑘))) |
59 | 58 | rneqd 5353 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝐹 ↾ (ℤ≥‘𝑘))) |
60 | 59 | supeq1d 8352 |
. . . . . 6
⊢ (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
61 | 60 | cbvmptv 4750 |
. . . . 5
⊢ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
62 | 61 | rneqi 5352 |
. . . 4
⊢ ran
(𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
63 | 62 | infeq1i 8384 |
. . 3
⊢ inf(ran
(𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ*, < ) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, <
)), ℝ*, < ) |
64 | 63 | a1i 11 |
. 2
⊢ (𝜑 → inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ*, < ) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, <
)), ℝ*, < )) |
65 | 15, 56, 64 | 3eqtrd 2660 |
1
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, <
)), ℝ*, < )) |