MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrusgrfrcond Structured version   Visualization version   GIF version

Theorem frgrusgrfrcond 27123
Description: A friendship graph is a simple graph which fulfils the friendship condition. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
isfrgr.v 𝑉 = (Vtx‘𝐺)
isfrgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrusgrfrcond (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
Distinct variable groups:   𝑘,𝑙,𝑥,𝐺   𝑘,𝑉,𝑙,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑘,𝑙)

Proof of Theorem frgrusgrfrcond
StepHypRef Expression
1 isfrgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isfrgr.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2isfrgr 27122 . . . 4 (𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)))
4 simpl 473 . . . 4 ((𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸) → 𝐺 ∈ USGraph )
53, 4syl6bi 243 . . 3 (𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ))
65pm2.43i 52 . 2 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
71, 2isfrgr 27122 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)))
86, 4, 7pm5.21nii 368 1 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  ∃!wreu 2914  cdif 3571  wss 3574  {csn 4177  {cpr 4179  cfv 5888  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-frgr 27121
This theorem is referenced by:  frgrusgr  27124  frgr0v  27125  frgr0  27128  frcond1  27130  frgr1v  27135  nfrgr2v  27136  frgr3v  27139  2pthfrgrrn  27146  n4cyclfrgr  27155
  Copyright terms: Public domain W3C validator