![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrusgrfrcond | Structured version Visualization version GIF version |
Description: A friendship graph is a simple graph which fulfils the friendship condition. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
isfrgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isfrgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrusgrfrcond | ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfrgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isfrgr.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | isfrgr 27122 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))) |
4 | simpl 473 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸) → 𝐺 ∈ USGraph ) | |
5 | 3, 4 | syl6bi 243 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )) |
6 | 5 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
7 | 1, 2 | isfrgr 27122 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))) |
8 | 6, 4, 7 | pm5.21nii 368 | 1 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃!wreu 2914 ∖ cdif 3571 ⊆ wss 3574 {csn 4177 {cpr 4179 ‘cfv 5888 Vtxcvtx 25874 Edgcedg 25939 USGraph cusgr 26044 FriendGraph cfrgr 27120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-frgr 27121 |
This theorem is referenced by: frgrusgr 27124 frgr0v 27125 frgr0 27128 frcond1 27130 frgr1v 27135 nfrgr2v 27136 frgr3v 27139 2pthfrgrrn 27146 n4cyclfrgr 27155 |
Copyright terms: Public domain | W3C validator |