| Step | Hyp | Ref
| Expression |
| 1 | | frgrusgr 27124 |
. . . . 5
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph
) |
| 2 | | usgrupgr 26077 |
. . . . 5
⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph
) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ UPGraph
) |
| 4 | | eqid 2622 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 5 | | eqid 2622 |
. . . . . . . . 9
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 6 | 4, 5 | upgr4cycl4dv4e 27045 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (#‘𝐹) = 4) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) |
| 7 | 4, 5 | frgrusgrfrcond 27123 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ FriendGraph ↔
(𝐺 ∈ USGraph ∧
∀𝑘 ∈
(Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 8 | | simplrl 800 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → 𝑐 ∈ (Vtx‘𝐺)) |
| 9 | | necom 2847 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ≠ 𝑐 ↔ 𝑐 ≠ 𝑎) |
| 10 | 9 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ≠ 𝑐 → 𝑐 ≠ 𝑎) |
| 11 | 10 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) → 𝑐 ≠ 𝑎) |
| 12 | 11 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . 18
⊢
(((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑))) → 𝑐 ≠ 𝑎) |
| 13 | 12 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → 𝑐 ≠ 𝑎) |
| 14 | | eldifsn 4317 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}) ↔ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑐 ≠ 𝑎)) |
| 15 | 8, 13, 14 | sylanbrc 698 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → 𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎})) |
| 16 | | sneq 4187 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑎 → {𝑘} = {𝑎}) |
| 17 | 16 | difeq2d 3728 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑎 → ((Vtx‘𝐺) ∖ {𝑘}) = ((Vtx‘𝐺) ∖ {𝑎})) |
| 18 | | preq2 4269 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑎 → {𝑥, 𝑘} = {𝑥, 𝑎}) |
| 19 | 18 | preq1d 4274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑎 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝑎}, {𝑥, 𝑙}}) |
| 20 | 19 | sseq1d 3632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑎 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 21 | 20 | reubidv 3126 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑎 → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 22 | 17, 21 | raleqbidv 3152 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑎 → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 23 | 22 | rspcv 3305 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ (Vtx‘𝐺) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 24 | 23 | ad3antrrr 766 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 25 | | preq2 4269 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 = 𝑐 → {𝑥, 𝑙} = {𝑥, 𝑐}) |
| 26 | 25 | preq2d 4275 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝑐 → {{𝑥, 𝑎}, {𝑥, 𝑙}} = {{𝑥, 𝑎}, {𝑥, 𝑐}}) |
| 27 | 26 | sseq1d 3632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝑐 → ({{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))) |
| 28 | 27 | reubidv 3126 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝑐 → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))) |
| 29 | 28 | rspcv 3305 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}) → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))) |
| 30 | 15, 24, 29 | sylsyld 61 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))) |
| 31 | | prcom 4267 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑥, 𝑎} = {𝑎, 𝑥} |
| 32 | 31 | preq1i 4271 |
. . . . . . . . . . . . . . . . . 18
⊢ {{𝑥, 𝑎}, {𝑥, 𝑐}} = {{𝑎, 𝑥}, {𝑥, 𝑐}} |
| 33 | 32 | sseq1i 3629 |
. . . . . . . . . . . . . . . . 17
⊢ ({{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) ↔ {{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)) |
| 34 | 33 | reubii 3128 |
. . . . . . . . . . . . . . . 16
⊢
(∃!𝑥 ∈
(Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)) |
| 35 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) |
| 36 | 35 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) |
| 37 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) → ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) |
| 38 | 37 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) |
| 39 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → 𝑏 ∈ (Vtx‘𝐺)) |
| 40 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → 𝑑 ∈ (Vtx‘𝐺)) |
| 41 | | simprr2 1110 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑))) → 𝑏 ≠ 𝑑) |
| 42 | 41 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → 𝑏 ≠ 𝑑) |
| 43 | | 4cycl2vnunb 27154 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺)) ∧ (𝑏 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺) ∧ 𝑏 ≠ 𝑑)) → ¬ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)) |
| 44 | 36, 38, 39, 40, 42, 43 | syl113anc 1338 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → ¬ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)) |
| 45 | 44 | pm2.21d 118 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → (#‘𝐹) ≠ 4)) |
| 46 | 45 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢
(∃!𝑥 ∈
(Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → (#‘𝐹) ≠ 4)) |
| 47 | 34, 46 | sylbi 207 |
. . . . . . . . . . . . . . 15
⊢
(∃!𝑥 ∈
(Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → (#‘𝐹) ≠ 4)) |
| 48 | 30, 47 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → (#‘𝐹) ≠ 4))) |
| 49 | 48 | pm2.43b 55 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
(Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → (#‘𝐹) ≠ 4)) |
| 50 | 49 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USGraph ∧
∀𝑘 ∈
(Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → (#‘𝐹) ≠ 4)) |
| 51 | 7, 50 | sylbi 207 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ FriendGraph →
((((𝑎 ∈
(Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑)))) → (#‘𝐹) ≠ 4)) |
| 52 | 51 | expdcom 455 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) → (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑))) → (𝐺 ∈ FriendGraph → (#‘𝐹) ≠ 4))) |
| 53 | 52 | rexlimdvva 3038 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → (∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑))) → (𝐺 ∈ FriendGraph → (#‘𝐹) ≠ 4))) |
| 54 | 53 | rexlimivv 3036 |
. . . . . . . 8
⊢
(∃𝑎 ∈
(Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑) ∧ (𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑))) → (𝐺 ∈ FriendGraph → (#‘𝐹) ≠ 4)) |
| 55 | 6, 54 | syl 17 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (#‘𝐹) = 4) → (𝐺 ∈ FriendGraph → (#‘𝐹) ≠ 4)) |
| 56 | 55 | 3exp 1264 |
. . . . . 6
⊢ (𝐺 ∈ UPGraph → (𝐹(Cycles‘𝐺)𝑃 → ((#‘𝐹) = 4 → (𝐺 ∈ FriendGraph → (#‘𝐹) ≠ 4)))) |
| 57 | 56 | com34 91 |
. . . . 5
⊢ (𝐺 ∈ UPGraph → (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ FriendGraph → ((#‘𝐹) = 4 → (#‘𝐹) ≠ 4)))) |
| 58 | 57 | com23 86 |
. . . 4
⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ FriendGraph →
(𝐹(Cycles‘𝐺)𝑃 → ((#‘𝐹) = 4 → (#‘𝐹) ≠ 4)))) |
| 59 | 3, 58 | mpcom 38 |
. . 3
⊢ (𝐺 ∈ FriendGraph →
(𝐹(Cycles‘𝐺)𝑃 → ((#‘𝐹) = 4 → (#‘𝐹) ≠ 4))) |
| 60 | 59 | imp 445 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → ((#‘𝐹) = 4 → (#‘𝐹) ≠ 4)) |
| 61 | | neqne 2802 |
. 2
⊢ (¬
(#‘𝐹) = 4 →
(#‘𝐹) ≠
4) |
| 62 | 60, 61 | pm2.61d1 171 |
1
⊢ ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (#‘𝐹) ≠ 4) |