MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvtp Structured version   Visualization version   GIF version

Theorem funcnvtp 5951
Description: The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
funcnvtp (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})

Proof of Theorem funcnvtp
StepHypRef Expression
1 simp1 1061 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → 𝐴𝑈)
2 simp2 1062 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → 𝐶𝑉)
3 simp1 1061 . . . 4 ((𝐵𝐷𝐵𝐹𝐷𝐹) → 𝐵𝐷)
4 funcnvpr 5950 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
51, 2, 3, 4syl2an3an 1386 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
6 funcnvsn 5936 . . . 4 Fun {⟨𝐸, 𝐹⟩}
76a1i 11 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐸, 𝐹⟩})
8 df-rn 5125 . . . . . . 7 ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
9 rnpropg 5615 . . . . . . 7 ((𝐴𝑈𝐶𝑉) → ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
108, 9syl5eqr 2670 . . . . . 6 ((𝐴𝑈𝐶𝑉) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
11103adant3 1081 . . . . 5 ((𝐴𝑈𝐶𝑉𝐸𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
12 df-rn 5125 . . . . . . 7 ran {⟨𝐸, 𝐹⟩} = dom {⟨𝐸, 𝐹⟩}
13 rnsnopg 5614 . . . . . . 7 (𝐸𝑊 → ran {⟨𝐸, 𝐹⟩} = {𝐹})
1412, 13syl5eqr 2670 . . . . . 6 (𝐸𝑊 → dom {⟨𝐸, 𝐹⟩} = {𝐹})
15143ad2ant3 1084 . . . . 5 ((𝐴𝑈𝐶𝑉𝐸𝑊) → dom {⟨𝐸, 𝐹⟩} = {𝐹})
1611, 15ineq12d 3815 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ({𝐵, 𝐷} ∩ {𝐹}))
17 disjprsn 4250 . . . . 5 ((𝐵𝐹𝐷𝐹) → ({𝐵, 𝐷} ∩ {𝐹}) = ∅)
18173adant1 1079 . . . 4 ((𝐵𝐷𝐵𝐹𝐷𝐹) → ({𝐵, 𝐷} ∩ {𝐹}) = ∅)
1916, 18sylan9eq 2676 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ∅)
20 funun 5932 . . 3 (((Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∧ Fun {⟨𝐸, 𝐹⟩}) ∧ (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
215, 7, 19, 20syl21anc 1325 . 2 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
22 df-tp 4182 . . . . 5 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2322cnveqi 5297 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
24 cnvun 5538 . . . 4 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2523, 24eqtri 2644 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2625funeqi 5909 . 2 (Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} ↔ Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
2721, 26sylibr 224 1 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cun 3572  cin 3573  c0 3915  {csn 4177  {cpr 4179  {ctp 4181  cop 4183  ccnv 5113  dom cdm 5114  ran crn 5115  Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890
This theorem is referenced by:  funcnvs3  13659
  Copyright terms: Public domain W3C validator