| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvtp | Structured version Visualization version Unicode version | ||
| Description: The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) |
| Ref | Expression |
|---|---|
| funcnvtp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . . 4
| |
| 2 | simp2 1062 |
. . . 4
| |
| 3 | simp1 1061 |
. . . 4
| |
| 4 | funcnvpr 5950 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | syl2an3an 1386 |
. . 3
|
| 6 | funcnvsn 5936 |
. . . 4
| |
| 7 | 6 | a1i 11 |
. . 3
|
| 8 | df-rn 5125 |
. . . . . . 7
| |
| 9 | rnpropg 5615 |
. . . . . . 7
| |
| 10 | 8, 9 | syl5eqr 2670 |
. . . . . 6
|
| 11 | 10 | 3adant3 1081 |
. . . . 5
|
| 12 | df-rn 5125 |
. . . . . . 7
| |
| 13 | rnsnopg 5614 |
. . . . . . 7
| |
| 14 | 12, 13 | syl5eqr 2670 |
. . . . . 6
|
| 15 | 14 | 3ad2ant3 1084 |
. . . . 5
|
| 16 | 11, 15 | ineq12d 3815 |
. . . 4
|
| 17 | disjprsn 4250 |
. . . . 5
| |
| 18 | 17 | 3adant1 1079 |
. . . 4
|
| 19 | 16, 18 | sylan9eq 2676 |
. . 3
|
| 20 | funun 5932 |
. . 3
| |
| 21 | 5, 7, 19, 20 | syl21anc 1325 |
. 2
|
| 22 | df-tp 4182 |
. . . . 5
| |
| 23 | 22 | cnveqi 5297 |
. . . 4
|
| 24 | cnvun 5538 |
. . . 4
| |
| 25 | 23, 24 | eqtri 2644 |
. . 3
|
| 26 | 25 | funeqi 5909 |
. 2
|
| 27 | 21, 26 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 |
| This theorem is referenced by: funcnvs3 13659 |
| Copyright terms: Public domain | W3C validator |