![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvima3 | Structured version Visualization version GIF version |
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.) |
Ref | Expression |
---|---|
funfvima3 | ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ 𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop 6329 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
2 | ssel 3597 | . . . . . 6 ⊢ (𝐹 ⊆ 𝐺 → (〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹 → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐺)) | |
3 | 1, 2 | syl5 34 | . . . . 5 ⊢ (𝐹 ⊆ 𝐺 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐺)) |
4 | 3 | imp 445 | . . . 4 ⊢ ((𝐹 ⊆ 𝐺 ∧ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐺) |
5 | sneq 4187 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
6 | 5 | imaeq2d 5466 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐺 “ {𝑥}) = (𝐺 “ {𝐴})) |
7 | 6 | eleq2d 2687 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝐴) ∈ (𝐺 “ {𝑥}) ↔ (𝐹‘𝐴) ∈ (𝐺 “ {𝐴}))) |
8 | opeq1 4402 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → 〈𝑥, (𝐹‘𝐴)〉 = 〈𝐴, (𝐹‘𝐴)〉) | |
9 | 8 | eleq1d 2686 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (〈𝑥, (𝐹‘𝐴)〉 ∈ 𝐺 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐺)) |
10 | vex 3203 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
11 | fvex 6201 | . . . . . . 7 ⊢ (𝐹‘𝐴) ∈ V | |
12 | 10, 11 | elimasn 5490 | . . . . . 6 ⊢ ((𝐹‘𝐴) ∈ (𝐺 “ {𝑥}) ↔ 〈𝑥, (𝐹‘𝐴)〉 ∈ 𝐺) |
13 | 7, 9, 12 | vtoclbg 3267 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ (𝐺 “ {𝐴}) ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐺)) |
14 | 13 | ad2antll 765 | . . . 4 ⊢ ((𝐹 ⊆ 𝐺 ∧ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) → ((𝐹‘𝐴) ∈ (𝐺 “ {𝐴}) ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐺)) |
15 | 4, 14 | mpbird 247 | . . 3 ⊢ ((𝐹 ⊆ 𝐺 ∧ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴})) |
16 | 15 | exp32 631 | . 2 ⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴})))) |
17 | 16 | impcom 446 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ 𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 {csn 4177 〈cop 4183 dom cdm 5114 “ cima 5117 Fun wfun 5882 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
This theorem is referenced by: dfac3 8944 |
Copyright terms: Public domain | W3C validator |