MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima3 Structured version   Visualization version   Unicode version

Theorem funfvima3 6495
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.)
Assertion
Ref Expression
funfvima3  |-  ( ( Fun  F  /\  F  C_  G )  ->  ( A  e.  dom  F  -> 
( F `  A
)  e.  ( G
" { A }
) ) )

Proof of Theorem funfvima3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funfvop 6329 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
2 ssel 3597 . . . . . 6  |-  ( F 
C_  G  ->  ( <. A ,  ( F `
 A ) >.  e.  F  ->  <. A , 
( F `  A
) >.  e.  G ) )
31, 2syl5 34 . . . . 5  |-  ( F 
C_  G  ->  (
( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `  A )
>.  e.  G ) )
43imp 445 . . . 4  |-  ( ( F  C_  G  /\  ( Fun  F  /\  A  e.  dom  F ) )  ->  <. A ,  ( F `  A )
>.  e.  G )
5 sneq 4187 . . . . . . . 8  |-  ( x  =  A  ->  { x }  =  { A } )
65imaeq2d 5466 . . . . . . 7  |-  ( x  =  A  ->  ( G " { x }
)  =  ( G
" { A }
) )
76eleq2d 2687 . . . . . 6  |-  ( x  =  A  ->  (
( F `  A
)  e.  ( G
" { x }
)  <->  ( F `  A )  e.  ( G " { A } ) ) )
8 opeq1 4402 . . . . . . 7  |-  ( x  =  A  ->  <. x ,  ( F `  A ) >.  =  <. A ,  ( F `  A ) >. )
98eleq1d 2686 . . . . . 6  |-  ( x  =  A  ->  ( <. x ,  ( F `
 A ) >.  e.  G  <->  <. A ,  ( F `  A )
>.  e.  G ) )
10 vex 3203 . . . . . . 7  |-  x  e. 
_V
11 fvex 6201 . . . . . . 7  |-  ( F `
 A )  e. 
_V
1210, 11elimasn 5490 . . . . . 6  |-  ( ( F `  A )  e.  ( G " { x } )  <->  <. x ,  ( F `
 A ) >.  e.  G )
137, 9, 12vtoclbg 3267 . . . . 5  |-  ( A  e.  dom  F  -> 
( ( F `  A )  e.  ( G " { A } )  <->  <. A , 
( F `  A
) >.  e.  G ) )
1413ad2antll 765 . . . 4  |-  ( ( F  C_  G  /\  ( Fun  F  /\  A  e.  dom  F ) )  ->  ( ( F `
 A )  e.  ( G " { A } )  <->  <. A , 
( F `  A
) >.  e.  G ) )
154, 14mpbird 247 . . 3  |-  ( ( F  C_  G  /\  ( Fun  F  /\  A  e.  dom  F ) )  ->  ( F `  A )  e.  ( G " { A } ) )
1615exp32 631 . 2  |-  ( F 
C_  G  ->  ( Fun  F  ->  ( A  e.  dom  F  ->  ( F `  A )  e.  ( G " { A } ) ) ) )
1716impcom 446 1  |-  ( ( Fun  F  /\  F  C_  G )  ->  ( A  e.  dom  F  -> 
( F `  A
)  e.  ( G
" { A }
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   <.cop 4183   dom cdm 5114   "cima 5117   Fun wfun 5882   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  dfac3  8944
  Copyright terms: Public domain W3C validator