MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funprg Structured version   Visualization version   GIF version

Theorem funprg 5940
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
funprg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})

Proof of Theorem funprg
StepHypRef Expression
1 funsng 5937 . . . . . 6 ((𝐴𝑉𝐶𝑋) → Fun {⟨𝐴, 𝐶⟩})
2 funsng 5937 . . . . . 6 ((𝐵𝑊𝐷𝑌) → Fun {⟨𝐵, 𝐷⟩})
31, 2anim12i 590 . . . . 5 (((𝐴𝑉𝐶𝑋) ∧ (𝐵𝑊𝐷𝑌)) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}))
43an4s 869 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}))
543adant3 1081 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}))
6 dmsnopg 5606 . . . . . 6 (𝐶𝑋 → dom {⟨𝐴, 𝐶⟩} = {𝐴})
7 dmsnopg 5606 . . . . . 6 (𝐷𝑌 → dom {⟨𝐵, 𝐷⟩} = {𝐵})
86, 7ineqan12d 3816 . . . . 5 ((𝐶𝑋𝐷𝑌) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ({𝐴} ∩ {𝐵}))
9 disjsn2 4247 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
108, 9sylan9eq 2676 . . . 4 (((𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅)
11103adant1 1079 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅)
12 funun 5932 . . 3 (((Fun {⟨𝐴, 𝐶⟩} ∧ Fun {⟨𝐵, 𝐷⟩}) ∧ (dom {⟨𝐴, 𝐶⟩} ∩ dom {⟨𝐵, 𝐷⟩}) = ∅) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
135, 11, 12syl2anc 693 . 2 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
14 df-pr 4180 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
1514funeqi 5909 . 2 (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ↔ Fun ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
1613, 15sylibr 224 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cun 3572  cin 3573  c0 3915  {csn 4177  {cpr 4179  cop 4183  dom cdm 5114  Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-fun 5890
This theorem is referenced by:  funtpg  5942  funtpgOLD  5943  funpr  5944  fnprg  5947  fpropnf1  6524
  Copyright terms: Public domain W3C validator