![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 865 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 207 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: an42s 870 anandis 873 anandirs 874 ax13 2249 nfeqf 2301 frminex 5094 trin2 5519 funprg 5940 funcnvqp 5952 fnun 5997 2elresin 6002 f1co 6110 f1oun 6156 f1oco 6159 fvreseq0 6317 f1mpt 6518 poxp 7289 soxp 7290 wfr3g 7413 wfrfun 7425 tfrlem7 7479 oeoe 7679 brecop 7840 pmss12g 7884 dif1en 8193 fiin 8328 tcmin 8617 harval2 8823 genpv 9821 genpdm 9824 genpnnp 9827 genpcd 9828 genpnmax 9829 addcmpblnr 9890 ltsrpr 9898 addclsr 9904 mulclsr 9905 addasssr 9909 mulasssr 9911 distrsr 9912 mulgt0sr 9926 addresr 9959 mulresr 9960 axaddf 9966 axmulf 9967 axaddass 9977 axmulass 9978 axdistr 9979 mulgt0 10115 mul4 10205 add4 10256 2addsub 10295 addsubeq4 10296 sub4 10326 muladd 10462 mulsub 10473 mulge0 10546 add20i 10571 mulge0i 10575 mulne0 10669 divmuldiv 10725 rec11i 10766 ltmul12a 10879 mulge0b 10893 zmulcl 11426 uz2mulcl 11766 qaddcl 11804 qmulcl 11806 qreccl 11808 rpaddcl 11854 xmulgt0 12113 xmulge0 12114 ixxin 12192 ge0addcl 12284 ge0xaddcl 12286 fzadd2 12376 serge0 12855 expge1 12897 sqrmo 13992 rexanuz 14085 amgm2 14109 mulcn2 14326 dvds2ln 15014 opoe 15087 omoe 15088 opeo 15089 omeo 15090 divalglem6 15121 divalglem8 15123 lcmcllem 15309 lcmgcd 15320 lcmdvds 15321 pc2dvds 15583 catpropd 16369 gimco 17710 efgrelexlemb 18163 pf1ind 19719 psgnghm 19926 tgcl 20773 innei 20929 iunconnlem 21230 txbas 21370 txss12 21408 txbasval 21409 tx1stc 21453 fbunfip 21673 tsmsxp 21958 blsscls2 22309 bddnghm 22530 qtopbaslem 22562 iimulcl 22736 icoopnst 22738 iocopnst 22739 iccpnfcnv 22743 mumullem2 24906 fsumvma 24938 lgslem3 25024 pntrsumbnd2 25256 wlknwwlksnfun 26774 ajmoi 27714 hvadd4 27893 hvsub4 27894 shsel3 28174 shscli 28176 shscom 28178 chj4 28394 5oalem3 28515 5oalem5 28517 5oalem6 28518 hoadd4 28643 adjmo 28691 adjsym 28692 cnvadj 28751 leopmuli 28992 mdslmd1lem2 29185 chirredlem2 29250 chirredi 29253 cdjreui 29291 addltmulALT 29305 reofld 29840 xrge0iifcnv 29979 poseq 31750 frr3g 31779 frrlem4 31783 frrlem5c 31786 funtransport 32138 btwnconn1lem13 32206 btwnconn1lem14 32207 outsideofeu 32238 outsidele 32239 funray 32247 lineintmo 32264 icoreclin 33205 poimirlem27 33436 heicant 33444 itg2gt0cn 33465 bndss 33585 isdrngo3 33758 riscer 33787 intidl 33828 unxpwdom3 37665 gbegt5 41649 |
Copyright terms: Public domain | W3C validator |