MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funressn Structured version   Visualization version   GIF version

Theorem funressn 6426
Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
funressn (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})

Proof of Theorem funressn
StepHypRef Expression
1 funfn 5918 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fnressn 6425 . . . 4 ((𝐹 Fn dom 𝐹𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
31, 2sylanb 489 . . 3 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
4 eqimss 3657 . . 3 ((𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩} → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
53, 4syl 17 . 2 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
6 disjsn 4246 . . . . 5 ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹)
7 fnresdisj 6001 . . . . . 6 (𝐹 Fn dom 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅))
81, 7sylbi 207 . . . . 5 (Fun 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅))
96, 8syl5bbr 274 . . . 4 (Fun 𝐹 → (¬ 𝐵 ∈ dom 𝐹 ↔ (𝐹 ↾ {𝐵}) = ∅))
109biimpa 501 . . 3 ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = ∅)
11 0ss 3972 . . 3 ∅ ⊆ {⟨𝐵, (𝐹𝐵)⟩}
1210, 11syl6eqss 3655 . 2 ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
135, 12pm2.61dan 832 1 (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cin 3573  wss 3574  c0 3915  {csn 4177  cop 4183  dom cdm 5114  cres 5116  Fun wfun 5882   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  fnsnb  6432  tfrlem16  7489  fnfi  8238  fodomfi  8239  bnj142OLD  30794
  Copyright terms: Public domain W3C validator