MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptss Structured version   Visualization version   GIF version

Theorem fvmptss 6292
Description: If all the values of the mapping are subsets of a class 𝐶, then so is any evaluation of the mapping, even if 𝐷 is not in the base set 𝐴. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
mptrcl.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptss (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mptrcl.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21dmmptss 5631 . . . 4 dom 𝐹𝐴
32sseli 3599 . . 3 (𝐷 ∈ dom 𝐹𝐷𝐴)
4 fveq2 6191 . . . . . . 7 (𝑦 = 𝐷 → (𝐹𝑦) = (𝐹𝐷))
54sseq1d 3632 . . . . . 6 (𝑦 = 𝐷 → ((𝐹𝑦) ⊆ 𝐶 ↔ (𝐹𝐷) ⊆ 𝐶))
65imbi2d 330 . . . . 5 (𝑦 = 𝐷 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)))
7 nfcv 2764 . . . . . 6 𝑥𝑦
8 nfra1 2941 . . . . . . 7 𝑥𝑥𝐴 𝐵𝐶
9 nfmpt1 4747 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
101, 9nfcxfr 2762 . . . . . . . . 9 𝑥𝐹
1110, 7nffv 6198 . . . . . . . 8 𝑥(𝐹𝑦)
12 nfcv 2764 . . . . . . . 8 𝑥𝐶
1311, 12nfss 3596 . . . . . . 7 𝑥(𝐹𝑦) ⊆ 𝐶
148, 13nfim 1825 . . . . . 6 𝑥(∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)
15 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1615sseq1d 3632 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ⊆ 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
1716imbi2d 330 . . . . . 6 (𝑥 = 𝑦 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)))
181dmmpt 5630 . . . . . . . . . . 11 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
1918rabeq2i 3197 . . . . . . . . . 10 (𝑥 ∈ dom 𝐹 ↔ (𝑥𝐴𝐵 ∈ V))
201fvmpt2 6291 . . . . . . . . . . 11 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
21 eqimss 3657 . . . . . . . . . . 11 ((𝐹𝑥) = 𝐵 → (𝐹𝑥) ⊆ 𝐵)
2220, 21syl 17 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) ⊆ 𝐵)
2319, 22sylbi 207 . . . . . . . . 9 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) ⊆ 𝐵)
24 ndmfv 6218 . . . . . . . . . 10 𝑥 ∈ dom 𝐹 → (𝐹𝑥) = ∅)
25 0ss 3972 . . . . . . . . . 10 ∅ ⊆ 𝐵
2624, 25syl6eqss 3655 . . . . . . . . 9 𝑥 ∈ dom 𝐹 → (𝐹𝑥) ⊆ 𝐵)
2723, 26pm2.61i 176 . . . . . . . 8 (𝐹𝑥) ⊆ 𝐵
28 rsp 2929 . . . . . . . . 9 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴𝐵𝐶))
2928impcom 446 . . . . . . . 8 ((𝑥𝐴 ∧ ∀𝑥𝐴 𝐵𝐶) → 𝐵𝐶)
3027, 29syl5ss 3614 . . . . . . 7 ((𝑥𝐴 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝑥) ⊆ 𝐶)
3130ex 450 . . . . . 6 (𝑥𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶))
327, 14, 17, 31vtoclgaf 3271 . . . . 5 (𝑦𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶))
336, 32vtoclga 3272 . . . 4 (𝐷𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶))
3433impcom 446 . . 3 ((∀𝑥𝐴 𝐵𝐶𝐷𝐴) → (𝐹𝐷) ⊆ 𝐶)
353, 34sylan2 491 . 2 ((∀𝑥𝐴 𝐵𝐶𝐷 ∈ dom 𝐹) → (𝐹𝐷) ⊆ 𝐶)
36 ndmfv 6218 . . . 4 𝐷 ∈ dom 𝐹 → (𝐹𝐷) = ∅)
3736adantl 482 . . 3 ((∀𝑥𝐴 𝐵𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹) → (𝐹𝐷) = ∅)
38 0ss 3972 . . 3 ∅ ⊆ 𝐶
3937, 38syl6eqss 3655 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹) → (𝐹𝐷) ⊆ 𝐶)
4035, 39pm2.61dan 832 1 (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  c0 3915  cmpt 4729  dom cdm 5114  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  relmptopab  6883  ovmptss  7258
  Copyright terms: Public domain W3C validator