| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptss | Structured version Visualization version Unicode version | ||
| Description: If all the values of the
mapping are subsets of a class |
| Ref | Expression |
|---|---|
| mptrcl.1 |
|
| Ref | Expression |
|---|---|
| fvmptss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrcl.1 |
. . . . 5
| |
| 2 | 1 | dmmptss 5631 |
. . . 4
|
| 3 | 2 | sseli 3599 |
. . 3
|
| 4 | fveq2 6191 |
. . . . . . 7
| |
| 5 | 4 | sseq1d 3632 |
. . . . . 6
|
| 6 | 5 | imbi2d 330 |
. . . . 5
|
| 7 | nfcv 2764 |
. . . . . 6
| |
| 8 | nfra1 2941 |
. . . . . . 7
| |
| 9 | nfmpt1 4747 |
. . . . . . . . . 10
| |
| 10 | 1, 9 | nfcxfr 2762 |
. . . . . . . . 9
|
| 11 | 10, 7 | nffv 6198 |
. . . . . . . 8
|
| 12 | nfcv 2764 |
. . . . . . . 8
| |
| 13 | 11, 12 | nfss 3596 |
. . . . . . 7
|
| 14 | 8, 13 | nfim 1825 |
. . . . . 6
|
| 15 | fveq2 6191 |
. . . . . . . 8
| |
| 16 | 15 | sseq1d 3632 |
. . . . . . 7
|
| 17 | 16 | imbi2d 330 |
. . . . . 6
|
| 18 | 1 | dmmpt 5630 |
. . . . . . . . . . 11
|
| 19 | 18 | rabeq2i 3197 |
. . . . . . . . . 10
|
| 20 | 1 | fvmpt2 6291 |
. . . . . . . . . . 11
|
| 21 | eqimss 3657 |
. . . . . . . . . . 11
| |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . 10
|
| 23 | 19, 22 | sylbi 207 |
. . . . . . . . 9
|
| 24 | ndmfv 6218 |
. . . . . . . . . 10
| |
| 25 | 0ss 3972 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | syl6eqss 3655 |
. . . . . . . . 9
|
| 27 | 23, 26 | pm2.61i 176 |
. . . . . . . 8
|
| 28 | rsp 2929 |
. . . . . . . . 9
| |
| 29 | 28 | impcom 446 |
. . . . . . . 8
|
| 30 | 27, 29 | syl5ss 3614 |
. . . . . . 7
|
| 31 | 30 | ex 450 |
. . . . . 6
|
| 32 | 7, 14, 17, 31 | vtoclgaf 3271 |
. . . . 5
|
| 33 | 6, 32 | vtoclga 3272 |
. . . 4
|
| 34 | 33 | impcom 446 |
. . 3
|
| 35 | 3, 34 | sylan2 491 |
. 2
|
| 36 | ndmfv 6218 |
. . . 4
| |
| 37 | 36 | adantl 482 |
. . 3
|
| 38 | 0ss 3972 |
. . 3
| |
| 39 | 37, 38 | syl6eqss 3655 |
. 2
|
| 40 | 35, 39 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 |
| This theorem is referenced by: relmptopab 6883 ovmptss 7258 |
| Copyright terms: Public domain | W3C validator |