MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptss Structured version   Visualization version   Unicode version

Theorem fvmptss 6292
Description: If all the values of the mapping are subsets of a class  C, then so is any evaluation of the mapping, even if  D is not in the base set  A. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
mptrcl.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmptss  |-  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C
)
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    D( x)    F( x)

Proof of Theorem fvmptss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mptrcl.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
21dmmptss 5631 . . . 4  |-  dom  F  C_  A
32sseli 3599 . . 3  |-  ( D  e.  dom  F  ->  D  e.  A )
4 fveq2 6191 . . . . . . 7  |-  ( y  =  D  ->  ( F `  y )  =  ( F `  D ) )
54sseq1d 3632 . . . . . 6  |-  ( y  =  D  ->  (
( F `  y
)  C_  C  <->  ( F `  D )  C_  C
) )
65imbi2d 330 . . . . 5  |-  ( y  =  D  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) ) )
7 nfcv 2764 . . . . . 6  |-  F/_ x
y
8 nfra1 2941 . . . . . . 7  |-  F/ x A. x  e.  A  B  C_  C
9 nfmpt1 4747 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  B )
101, 9nfcxfr 2762 . . . . . . . . 9  |-  F/_ x F
1110, 7nffv 6198 . . . . . . . 8  |-  F/_ x
( F `  y
)
12 nfcv 2764 . . . . . . . 8  |-  F/_ x C
1311, 12nfss 3596 . . . . . . 7  |-  F/ x
( F `  y
)  C_  C
148, 13nfim 1825 . . . . . 6  |-  F/ x
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )
15 fveq2 6191 . . . . . . . 8  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1615sseq1d 3632 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  C_  C  <->  ( F `  y )  C_  C
) )
1716imbi2d 330 . . . . . 6  |-  ( x  =  y  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  x
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) ) )
181dmmpt 5630 . . . . . . . . . . 11  |-  dom  F  =  { x  e.  A  |  B  e.  _V }
1918rabeq2i 3197 . . . . . . . . . 10  |-  ( x  e.  dom  F  <->  ( x  e.  A  /\  B  e. 
_V ) )
201fvmpt2 6291 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  =  B )
21 eqimss 3657 . . . . . . . . . . 11  |-  ( ( F `  x )  =  B  ->  ( F `  x )  C_  B )
2220, 21syl 17 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  C_  B )
2319, 22sylbi 207 . . . . . . . . 9  |-  ( x  e.  dom  F  -> 
( F `  x
)  C_  B )
24 ndmfv 6218 . . . . . . . . . 10  |-  ( -.  x  e.  dom  F  ->  ( F `  x
)  =  (/) )
25 0ss 3972 . . . . . . . . . 10  |-  (/)  C_  B
2624, 25syl6eqss 3655 . . . . . . . . 9  |-  ( -.  x  e.  dom  F  ->  ( F `  x
)  C_  B )
2723, 26pm2.61i 176 . . . . . . . 8  |-  ( F `
 x )  C_  B
28 rsp 2929 . . . . . . . . 9  |-  ( A. x  e.  A  B  C_  C  ->  ( x  e.  A  ->  B  C_  C ) )
2928impcom 446 . . . . . . . 8  |-  ( ( x  e.  A  /\  A. x  e.  A  B  C_  C )  ->  B  C_  C )
3027, 29syl5ss 3614 . . . . . . 7  |-  ( ( x  e.  A  /\  A. x  e.  A  B  C_  C )  ->  ( F `  x )  C_  C )
3130ex 450 . . . . . 6  |-  ( x  e.  A  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  x )  C_  C ) )
327, 14, 17, 31vtoclgaf 3271 . . . . 5  |-  ( y  e.  A  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) )
336, 32vtoclga 3272 . . . 4  |-  ( D  e.  A  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) )
3433impcom 446 . . 3  |-  ( ( A. x  e.  A  B  C_  C  /\  D  e.  A )  ->  ( F `  D )  C_  C )
353, 34sylan2 491 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  D  e.  dom  F )  -> 
( F `  D
)  C_  C )
36 ndmfv 6218 . . . 4  |-  ( -.  D  e.  dom  F  ->  ( F `  D
)  =  (/) )
3736adantl 482 . . 3  |-  ( ( A. x  e.  A  B  C_  C  /\  -.  D  e.  dom  F )  ->  ( F `  D )  =  (/) )
38 0ss 3972 . . 3  |-  (/)  C_  C
3937, 38syl6eqss 3655 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  -.  D  e.  dom  F )  ->  ( F `  D )  C_  C
)
4035, 39pm2.61dan 832 1  |-  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915    |-> cmpt 4729   dom cdm 5114   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  relmptopab  6883  ovmptss  7258
  Copyright terms: Public domain W3C validator