MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvn0fvelrn Structured version   Visualization version   GIF version

Theorem fvn0fvelrn 6430
Description: If the value of a function is not null, the value is an element of the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
Assertion
Ref Expression
fvn0fvelrn ((𝐹𝑋) ≠ ∅ → (𝐹𝑋) ∈ ran 𝐹)

Proof of Theorem fvn0fvelrn
StepHypRef Expression
1 fvfundmfvn0 6226 . 2 ((𝐹𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})))
2 eldmressnsn 5439 . . . 4 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))
3 fvelrn 6352 . . . . . . 7 ((Fun (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) → ((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}))
4 pm3.2 463 . . . . . . 7 (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)))
53, 4syl 17 . . . . . 6 ((Fun (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)))
65ex 450 . . . . 5 (Fun (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))))
76com13 88 . . . 4 (𝑋 ∈ dom 𝐹 → (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → (Fun (𝐹 ↾ {𝑋}) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))))
82, 7mpd 15 . . 3 (𝑋 ∈ dom 𝐹 → (Fun (𝐹 ↾ {𝑋}) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)))
98imp 445 . 2 ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))
10 fvressn 6429 . . . . 5 (𝑋 ∈ dom 𝐹 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹𝑋))
1110eleq1d 2686 . . . 4 (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ↔ (𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋})))
12 fvrnressn 6428 . . . 4 (𝑋 ∈ dom 𝐹 → ((𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
1311, 12sylbid 230 . . 3 (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
1413impcom 446 . 2 ((((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) ∈ ran 𝐹)
151, 9, 143syl 18 1 ((𝐹𝑋) ≠ ∅ → (𝐹𝑋) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wne 2794  c0 3915  {csn 4177  dom cdm 5114  ran crn 5115  cres 5116  Fun wfun 5882  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  wlkvtxiedg  26520
  Copyright terms: Public domain W3C validator