Proof of Theorem fvsnun1
| Step | Hyp | Ref
| Expression |
| 1 | | fvsnun.3 |
. . . . 5
⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
| 2 | 1 | reseq1i 5392 |
. . . 4
⊢ (𝐺 ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) |
| 3 | | resundir 5411 |
. . . . 5
⊢
(({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) |
| 4 | | incom 3805 |
. . . . . . . . 9
⊢ ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ({𝐴} ∩ (𝐶 ∖ {𝐴})) |
| 5 | | disjdif 4040 |
. . . . . . . . 9
⊢ ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ |
| 6 | 4, 5 | eqtri 2644 |
. . . . . . . 8
⊢ ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ |
| 7 | | resdisj 5563 |
. . . . . . . 8
⊢ (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . 7
⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅ |
| 9 | 8 | uneq2i 3764 |
. . . . . 6
⊢
(({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) |
| 10 | | un0 3967 |
. . . . . 6
⊢
(({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) =
({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 11 | 9, 10 | eqtri 2644 |
. . . . 5
⊢
(({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 12 | 3, 11 | eqtri 2644 |
. . . 4
⊢
(({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 13 | 2, 12 | eqtri 2644 |
. . 3
⊢ (𝐺 ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 14 | 13 | fveq1i 6192 |
. 2
⊢ ((𝐺 ↾ {𝐴})‘𝐴) = (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) |
| 15 | | fvsnun.1 |
. . . 4
⊢ 𝐴 ∈ V |
| 16 | 15 | snid 4208 |
. . 3
⊢ 𝐴 ∈ {𝐴} |
| 17 | | fvres 6207 |
. . 3
⊢ (𝐴 ∈ {𝐴} → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺‘𝐴)) |
| 18 | 16, 17 | ax-mp 5 |
. 2
⊢ ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺‘𝐴) |
| 19 | | fvres 6207 |
. . . 4
⊢ (𝐴 ∈ {𝐴} → (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴)) |
| 20 | 16, 19 | ax-mp 5 |
. . 3
⊢
(({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴) |
| 21 | | fvsnun.2 |
. . . 4
⊢ 𝐵 ∈ V |
| 22 | 15, 21 | fvsn 6446 |
. . 3
⊢
({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| 23 | 20, 22 | eqtri 2644 |
. 2
⊢
(({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = 𝐵 |
| 24 | 14, 18, 23 | 3eqtr3i 2652 |
1
⊢ (𝐺‘𝐴) = 𝐵 |