MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundir Structured version   Visualization version   GIF version

Theorem resundir 5411
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
resundir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem resundir
StepHypRef Expression
1 indir 3875 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V)))
2 df-res 5126 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5126 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 5126 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4uneq12i 3765 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2654 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  Vcvv 3200  cun 3572  cin 3573   × cxp 5112  cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-res 5126
This theorem is referenced by:  imaundir  5546  fresaunres2  6076  fvunsn  6445  fvsnun1  6448  fvsnun2  6449  fsnunfv  6453  fsnunres  6454  wfrlem14  7428  domss2  8119  axdc3lem4  9275  fseq1p1m1  12414  hashgval  13120  hashinf  13122  setsres  15901  setscom  15903  setsid  15914  pwssplit1  19059  ex-res  27298  funresdm1  29416  padct  29497  eulerpartlemt  30433  nosupbnd2lem1  31861  noetalem2  31864  noetalem3  31865  poimirlem3  33412  mapfzcons1  37280  diophrw  37322  eldioph2lem1  37323  eldioph2lem2  37324  diophin  37336  pwssplit4  37659
  Copyright terms: Public domain W3C validator