Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace2 Structured version   Visualization version   GIF version

Theorem gneispace2 38430
Description: The predicate that 𝐹 is a (generic) Seifert And Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace2 (𝐹𝑉 → (𝐹𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑉(𝑓,𝑛,𝑠,𝑝)

Proof of Theorem gneispace2
StepHypRef Expression
1 id 22 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
2 dmeq 5324 . . . 4 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
32pweqd 4163 . . . . . . 7 (𝑓 = 𝐹 → 𝒫 dom 𝑓 = 𝒫 dom 𝐹)
43difeq1d 3727 . . . . . 6 (𝑓 = 𝐹 → (𝒫 dom 𝑓 ∖ {∅}) = (𝒫 dom 𝐹 ∖ {∅}))
54pweqd 4163 . . . . 5 (𝑓 = 𝐹 → 𝒫 (𝒫 dom 𝑓 ∖ {∅}) = 𝒫 (𝒫 dom 𝐹 ∖ {∅}))
65difeq1d 3727 . . . 4 (𝑓 = 𝐹 → (𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) = (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
71, 2, 6feq123d 6034 . . 3 (𝑓 = 𝐹 → (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
8 fveq1 6190 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑝) = (𝐹𝑝))
98eleq2d 2687 . . . . . . . 8 (𝑓 = 𝐹 → (𝑠 ∈ (𝑓𝑝) ↔ 𝑠 ∈ (𝐹𝑝)))
109imbi2d 330 . . . . . . 7 (𝑓 = 𝐹 → ((𝑛𝑠𝑠 ∈ (𝑓𝑝)) ↔ (𝑛𝑠𝑠 ∈ (𝐹𝑝))))
113, 10raleqbidv 3152 . . . . . 6 (𝑓 = 𝐹 → (∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝)) ↔ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
1211anbi2d 740 . . . . 5 (𝑓 = 𝐹 → ((𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ (𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
138, 12raleqbidv 3152 . . . 4 (𝑓 = 𝐹 → (∀𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
142, 13raleqbidv 3152 . . 3 (𝑓 = 𝐹 → (∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))) ↔ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
157, 14anbi12d 747 . 2 (𝑓 = 𝐹 → ((𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝)))) ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
16 gneispace.a . 2 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
1715, 16elab2g 3353 1 (𝐹𝑉 → (𝐹𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  cdif 3571  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  dom cdm 5114  wf 5884  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  gneispace3  38431  gneispacef  38433  gneispaceel  38441  gneispacess  38443
  Copyright terms: Public domain W3C validator