![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gropd | Structured version Visualization version GIF version |
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.) |
Ref | Expression |
---|---|
gropd.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) |
gropd.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
gropd.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
Ref | Expression |
---|---|
gropd | ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 4932 | . . 3 ⊢ 〈𝑉, 𝐸〉 ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ V) |
3 | gropd.g | . 2 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) | |
4 | gropd.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
5 | gropd.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
6 | opvtxfv 25884 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
7 | opiedgfv 25887 | . . . 4 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
8 | 6, 7 | jca 554 | . . 3 ⊢ ((𝑉 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) |
9 | 4, 5, 8 | syl2anc 693 | . 2 ⊢ (𝜑 → ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) |
10 | nfcv 2764 | . . 3 ⊢ Ⅎ𝑔〈𝑉, 𝐸〉 | |
11 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑔((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
12 | nfsbc1v 3455 | . . . 4 ⊢ Ⅎ𝑔[〈𝑉, 𝐸〉 / 𝑔]𝜓 | |
13 | 11, 12 | nfim 1825 | . . 3 ⊢ Ⅎ𝑔(((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
14 | fveq2 6191 | . . . . . 6 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → (Vtx‘𝑔) = (Vtx‘〈𝑉, 𝐸〉)) | |
15 | 14 | eqeq1d 2624 | . . . . 5 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘〈𝑉, 𝐸〉) = 𝑉)) |
16 | fveq2 6191 | . . . . . 6 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → (iEdg‘𝑔) = (iEdg‘〈𝑉, 𝐸〉)) | |
17 | 16 | eqeq1d 2624 | . . . . 5 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘〈𝑉, 𝐸〉) = 𝐸)) |
18 | 15, 17 | anbi12d 747 | . . . 4 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸))) |
19 | sbceq1a 3446 | . . . 4 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → (𝜓 ↔ [〈𝑉, 𝐸〉 / 𝑔]𝜓)) | |
20 | 18, 19 | imbi12d 334 | . . 3 ⊢ (𝑔 = 〈𝑉, 𝐸〉 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓))) |
21 | 10, 13, 20 | spcgf 3288 | . 2 ⊢ (〈𝑉, 𝐸〉 ∈ V → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘〈𝑉, 𝐸〉) = 𝑉 ∧ (iEdg‘〈𝑉, 𝐸〉) = 𝐸) → [〈𝑉, 𝐸〉 / 𝑔]𝜓))) |
22 | 2, 3, 9, 21 | syl3c 66 | 1 ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 = wceq 1483 ∈ wcel 1990 Vcvv 3200 [wsbc 3435 〈cop 4183 ‘cfv 5888 Vtxcvtx 25874 iEdgciedg 25875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-1st 7168 df-2nd 7169 df-vtx 25876 df-iedg 25877 |
This theorem is referenced by: gropeld 25925 |
Copyright terms: Public domain | W3C validator |