MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gropd Structured version   Visualization version   Unicode version

Theorem gropd 25923
Description: If any representation of a graph with vertices  V and edges  E has a certain property  ps, then the ordered pair  <. V ,  E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices  V and edges  E) has this property. (Contributed by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
gropd.g  |-  ( ph  ->  A. g ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )
)
gropd.v  |-  ( ph  ->  V  e.  U )
gropd.e  |-  ( ph  ->  E  e.  W )
Assertion
Ref Expression
gropd  |-  ( ph  ->  [. <. V ,  E >.  /  g ]. ps )
Distinct variable groups:    g, E    g, V    ph, g
Allowed substitution hints:    ps( g)    U( g)    W( g)

Proof of Theorem gropd
StepHypRef Expression
1 opex 4932 . . 3  |-  <. V ,  E >.  e.  _V
21a1i 11 . 2  |-  ( ph  -> 
<. V ,  E >.  e. 
_V )
3 gropd.g . 2  |-  ( ph  ->  A. g ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )
)
4 gropd.v . . 3  |-  ( ph  ->  V  e.  U )
5 gropd.e . . 3  |-  ( ph  ->  E  e.  W )
6 opvtxfv 25884 . . . 4  |-  ( ( V  e.  U  /\  E  e.  W )  ->  (Vtx `  <. V ,  E >. )  =  V )
7 opiedgfv 25887 . . . 4  |-  ( ( V  e.  U  /\  E  e.  W )  ->  (iEdg `  <. V ,  E >. )  =  E )
86, 7jca 554 . . 3  |-  ( ( V  e.  U  /\  E  e.  W )  ->  ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E ) )
94, 5, 8syl2anc 693 . 2  |-  ( ph  ->  ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E ) )
10 nfcv 2764 . . 3  |-  F/_ g <. V ,  E >.
11 nfv 1843 . . . 4  |-  F/ g ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E )
12 nfsbc1v 3455 . . . 4  |-  F/ g
[. <. V ,  E >.  /  g ]. ps
1311, 12nfim 1825 . . 3  |-  F/ g ( ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E )  ->  [. <. V ,  E >.  /  g ]. ps )
14 fveq2 6191 . . . . . 6  |-  ( g  =  <. V ,  E >.  ->  (Vtx `  g
)  =  (Vtx `  <. V ,  E >. ) )
1514eqeq1d 2624 . . . . 5  |-  ( g  =  <. V ,  E >.  ->  ( (Vtx `  g )  =  V  <-> 
(Vtx `  <. V ,  E >. )  =  V ) )
16 fveq2 6191 . . . . . 6  |-  ( g  =  <. V ,  E >.  ->  (iEdg `  g
)  =  (iEdg `  <. V ,  E >. ) )
1716eqeq1d 2624 . . . . 5  |-  ( g  =  <. V ,  E >.  ->  ( (iEdg `  g )  =  E  <-> 
(iEdg `  <. V ,  E >. )  =  E ) )
1815, 17anbi12d 747 . . . 4  |-  ( g  =  <. V ,  E >.  ->  ( ( (Vtx
`  g )  =  V  /\  (iEdg `  g )  =  E )  <->  ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E ) ) )
19 sbceq1a 3446 . . . 4  |-  ( g  =  <. V ,  E >.  ->  ( ps  <->  [. <. V ,  E >.  /  g ]. ps ) )
2018, 19imbi12d 334 . . 3  |-  ( g  =  <. V ,  E >.  ->  ( ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )  <->  ( ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E )  ->  [. <. V ,  E >.  /  g ]. ps ) ) )
2110, 13, 20spcgf 3288 . 2  |-  ( <. V ,  E >.  e. 
_V  ->  ( A. g
( ( (Vtx `  g )  =  V  /\  (iEdg `  g
)  =  E )  ->  ps )  -> 
( ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E )  ->  [. <. V ,  E >.  /  g ]. ps ) ) )
222, 3, 9, 21syl3c 66 1  |-  ( ph  ->  [. <. V ,  E >.  /  g ]. ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435   <.cop 4183   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877
This theorem is referenced by:  gropeld  25925
  Copyright terms: Public domain W3C validator