MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidd2 Structured version   Visualization version   GIF version

Theorem grpidd2 17459
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 17444. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
grpidd2.b (𝜑𝐵 = (Base‘𝐺))
grpidd2.p (𝜑+ = (+g𝐺))
grpidd2.z (𝜑0𝐵)
grpidd2.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
grpidd2.j (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpidd2 (𝜑0 = (0g𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥, +   𝜑,𝑥   𝑥, 0
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem grpidd2
StepHypRef Expression
1 grpidd2.p . . . . 5 (𝜑+ = (+g𝐺))
21oveqd 6667 . . . 4 (𝜑 → ( 0 + 0 ) = ( 0 (+g𝐺) 0 ))
3 grpidd2.z . . . . 5 (𝜑0𝐵)
4 grpidd2.i . . . . . 6 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
54ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑥𝐵 ( 0 + 𝑥) = 𝑥)
6 oveq2 6658 . . . . . . 7 (𝑥 = 0 → ( 0 + 𝑥) = ( 0 + 0 ))
7 id 22 . . . . . . 7 (𝑥 = 0𝑥 = 0 )
86, 7eqeq12d 2637 . . . . . 6 (𝑥 = 0 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 0 ) = 0 ))
98rspcv 3305 . . . . 5 ( 0𝐵 → (∀𝑥𝐵 ( 0 + 𝑥) = 𝑥 → ( 0 + 0 ) = 0 ))
103, 5, 9sylc 65 . . . 4 (𝜑 → ( 0 + 0 ) = 0 )
112, 10eqtr3d 2658 . . 3 (𝜑 → ( 0 (+g𝐺) 0 ) = 0 )
12 grpidd2.j . . . 4 (𝜑𝐺 ∈ Grp)
13 grpidd2.b . . . . 5 (𝜑𝐵 = (Base‘𝐺))
143, 13eleqtrd 2703 . . . 4 (𝜑0 ∈ (Base‘𝐺))
15 eqid 2622 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
16 eqid 2622 . . . . 5 (+g𝐺) = (+g𝐺)
17 eqid 2622 . . . . 5 (0g𝐺) = (0g𝐺)
1815, 16, 17grpid 17457 . . . 4 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → (( 0 (+g𝐺) 0 ) = 0 ↔ (0g𝐺) = 0 ))
1912, 14, 18syl2anc 693 . . 3 (𝜑 → (( 0 (+g𝐺) 0 ) = 0 ↔ (0g𝐺) = 0 ))
2011, 19mpbid 222 . 2 (𝜑 → (0g𝐺) = 0 )
2120eqcomd 2628 1 (𝜑0 = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425
This theorem is referenced by:  imasgrp2  17530
  Copyright terms: Public domain W3C validator