MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidd2 Structured version   Visualization version   Unicode version

Theorem grpidd2 17459
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 17444. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
grpidd2.b  |-  ( ph  ->  B  =  ( Base `  G ) )
grpidd2.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
grpidd2.z  |-  ( ph  ->  .0.  e.  B )
grpidd2.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
grpidd2.j  |-  ( ph  ->  G  e.  Grp )
Assertion
Ref Expression
grpidd2  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Distinct variable groups:    x, B    x, 
.+    ph, x    x,  .0.
Allowed substitution hint:    G( x)

Proof of Theorem grpidd2
StepHypRef Expression
1 grpidd2.p . . . . 5  |-  ( ph  ->  .+  =  ( +g  `  G ) )
21oveqd 6667 . . . 4  |-  ( ph  ->  (  .0.  .+  .0.  )  =  (  .0.  ( +g  `  G )  .0.  ) )
3 grpidd2.z . . . . 5  |-  ( ph  ->  .0.  e.  B )
4 grpidd2.i . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
54ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. x  e.  B  (  .0.  .+  x )  =  x )
6 oveq2 6658 . . . . . . 7  |-  ( x  =  .0.  ->  (  .0.  .+  x )  =  (  .0.  .+  .0.  ) )
7 id 22 . . . . . . 7  |-  ( x  =  .0.  ->  x  =  .0.  )
86, 7eqeq12d 2637 . . . . . 6  |-  ( x  =  .0.  ->  (
(  .0.  .+  x
)  =  x  <->  (  .0.  .+  .0.  )  =  .0.  ) )
98rspcv 3305 . . . . 5  |-  (  .0. 
e.  B  ->  ( A. x  e.  B  (  .0.  .+  x )  =  x  ->  (  .0.  .+  .0.  )  =  .0.  ) )
103, 5, 9sylc 65 . . . 4  |-  ( ph  ->  (  .0.  .+  .0.  )  =  .0.  )
112, 10eqtr3d 2658 . . 3  |-  ( ph  ->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  )
12 grpidd2.j . . . 4  |-  ( ph  ->  G  e.  Grp )
13 grpidd2.b . . . . 5  |-  ( ph  ->  B  =  ( Base `  G ) )
143, 13eleqtrd 2703 . . . 4  |-  ( ph  ->  .0.  e.  ( Base `  G ) )
15 eqid 2622 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
16 eqid 2622 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
17 eqid 2622 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
1815, 16, 17grpid 17457 . . . 4  |-  ( ( G  e.  Grp  /\  .0.  e.  ( Base `  G
) )  ->  (
(  .0.  ( +g  `  G )  .0.  )  =  .0.  <->  ( 0g `  G )  =  .0.  ) )
1912, 14, 18syl2anc 693 . . 3  |-  ( ph  ->  ( (  .0.  ( +g  `  G )  .0.  )  =  .0.  <->  ( 0g `  G )  =  .0.  ) )
2011, 19mpbid 222 . 2  |-  ( ph  ->  ( 0g `  G
)  =  .0.  )
2120eqcomd 2628 1  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425
This theorem is referenced by:  imasgrp2  17530
  Copyright terms: Public domain W3C validator