| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidd2 | Structured version Visualization version Unicode version | ||
| Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 17444. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| grpidd2.b |
|
| grpidd2.p |
|
| grpidd2.z |
|
| grpidd2.i |
|
| grpidd2.j |
|
| Ref | Expression |
|---|---|
| grpidd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidd2.p |
. . . . 5
| |
| 2 | 1 | oveqd 6667 |
. . . 4
|
| 3 | grpidd2.z |
. . . . 5
| |
| 4 | grpidd2.i |
. . . . . 6
| |
| 5 | 4 | ralrimiva 2966 |
. . . . 5
|
| 6 | oveq2 6658 |
. . . . . . 7
| |
| 7 | id 22 |
. . . . . . 7
| |
| 8 | 6, 7 | eqeq12d 2637 |
. . . . . 6
|
| 9 | 8 | rspcv 3305 |
. . . . 5
|
| 10 | 3, 5, 9 | sylc 65 |
. . . 4
|
| 11 | 2, 10 | eqtr3d 2658 |
. . 3
|
| 12 | grpidd2.j |
. . . 4
| |
| 13 | grpidd2.b |
. . . . 5
| |
| 14 | 3, 13 | eleqtrd 2703 |
. . . 4
|
| 15 | eqid 2622 |
. . . . 5
| |
| 16 | eqid 2622 |
. . . . 5
| |
| 17 | eqid 2622 |
. . . . 5
| |
| 18 | 15, 16, 17 | grpid 17457 |
. . . 4
|
| 19 | 12, 14, 18 | syl2anc 693 |
. . 3
|
| 20 | 11, 19 | mpbid 222 |
. 2
|
| 21 | 20 | eqcomd 2628 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 |
| This theorem is referenced by: imasgrp2 17530 |
| Copyright terms: Public domain | W3C validator |