MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinveu Structured version   Visualization version   GIF version

Theorem grpinveu 17456
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b 𝐵 = (Base‘𝐺)
grpinveu.p + = (+g𝐺)
grpinveu.o 0 = (0g𝐺)
Assertion
Ref Expression
grpinveu ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦, +   𝑦, 0   𝑦,𝑋

Proof of Theorem grpinveu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 grpinveu.b . . . 4 𝐵 = (Base‘𝐺)
2 grpinveu.p . . . 4 + = (+g𝐺)
3 grpinveu.o . . . 4 0 = (0g𝐺)
41, 2, 3grpinvex 17432 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
5 eqtr3 2643 . . . . . . . . . . . 12 (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → (𝑦 + 𝑋) = (𝑧 + 𝑋))
61, 2grprcan 17455 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → ((𝑦 + 𝑋) = (𝑧 + 𝑋) ↔ 𝑦 = 𝑧))
75, 6syl5ib 234 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
873exp2 1285 . . . . . . . . . 10 (𝐺 ∈ Grp → (𝑦𝐵 → (𝑧𝐵 → (𝑋𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)))))
98com24 95 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑧𝐵 → (𝑦𝐵 → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧)))))
109imp41 619 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑧𝐵) ∧ 𝑦𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
1110an32s 846 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → (((𝑦 + 𝑋) = 0 ∧ (𝑧 + 𝑋) = 0 ) → 𝑦 = 𝑧))
1211expd 452 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
1312ralrimdva 2969 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((𝑦 + 𝑋) = 0 → ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
1413ancld 576 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → ((𝑦 + 𝑋) = 0 → ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧))))
1514reximdva 3017 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (∃𝑦𝐵 (𝑦 + 𝑋) = 0 → ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧))))
164, 15mpd 15 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
17 oveq1 6657 . . . 4 (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋))
1817eqeq1d 2624 . . 3 (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 ))
1918reu8 3402 . 2 (∃!𝑦𝐵 (𝑦 + 𝑋) = 0 ↔ ∃𝑦𝐵 ((𝑦 + 𝑋) = 0 ∧ ∀𝑧𝐵 ((𝑧 + 𝑋) = 0𝑦 = 𝑧)))
2016, 19sylibr 224 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  ∃!wreu 2914  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425
This theorem is referenced by:  grpinvf  17466  grplinv  17468  isgrpinv  17472
  Copyright terms: Public domain W3C validator